
QCSD: A QUIC Client-Side Website-Fingerprinting Defence Framework

Jean-Pierre Smith
ETH Zurich

Luca Dolfi
ETH Zurich

Prateek Mittal
Princeton University

Adrian Perrig
ETH Zurich

Abstract
Website fingerprinting attacks, which analyse the metadata
of encrypted network communication to identify visited web-
sites, have been shown to be effective on privacy-enhancing
technologies including virtual private networks (VPNs) and
encrypted proxies. Despite this, VPNs are still undefended
against these attacks, leaving millions of users vulnerable.
Proposed defences against website fingerprinting require co-
operation between the client and a remote endpoint to reshape
the network traffic, thereby hindering deployment.

We observe that the rapid and wide-spread deployment of
QUIC and HTTP/3 creates an exciting opportunity to build
website-fingerprinting defences directly into client applica-
tions, such as browsers, without requiring any changes to
web servers, VPNs, or the deployment of new network ser-
vices. We therefore design and implement the QCSD frame-
work, which leverages QUIC and HTTP/3 to emulate exist-
ing website-fingerprinting defences by bidirectionally adding
cover traffic and reshaping connections solely from the client.
As case studies, we emulate both the FRONT and Tama-
raw defences solely from the client and collected several
datasets of live-defended traffic on which we evaluated mod-
ern machine-learning based attacks. Our results demonstrate
the promise of this approach in shaping connections towards
client-orchestrated defences, thereby removing a primary bar-
rier to the deployment of website-fingerprinting defences.

1 Introduction

Despite its appearance in 1948 in the Universal Declaration
of Human Rights, “No one shall be subjected to arbitrary in-
terference with his privacy, family, home or correspondence”,
privacy is difficult to achieve on today’s Internet. Instead,
government and private surveillance can determine Internet
users’ web-browsing activities by observing their unencrypted
traffic and the metadata leaked by standard encrypted com-
munication. The increasing popularity of privacy-enhancing
services, such as virtual private network (VPN) connections

and anonymity networks like Tor [1], as well as of privacy-
focused browsers, such as Brave and Firefox, indicates the
importance of privacy to web users. Indeed, according to the
GlobalWebIndex, an estimated 25% of the world’s Internet
users utilise VPNs at least once a month [2], with 34% of
those utilising it for privacy reasons [3].

Nonetheless, researchers have shown that despite the en-
cryption and proxying performed by these privacy-enhancing
technologies, it is still possible to identify the visited web-
site [4]–[17]. In website fingerprinting, a passive observer
identifies the website by statistically analysing observed
packet sizes and timings, undeterred by encryption. This class
of attacks has been shown to successfully identify encrypted
websites while being undetectable by the web user [12]–[15].

Numerous defences against website fingerprinting have
been proposed, which reshape the communication between
the endpoints to obscure traffic features to and from the
client [8], [18]–[27]. However, these defences require changes
to both local endpoints, such as web clients, and remote end-
points, such as web servers or proxy gateways. This require-
ment to deploy or change endpoints outside of a client’s con-
trol has hindered the deployment of website-fingerprinting
defences. With the growing demand for VPNs provided as
browser extensions, and with browser vendors targeting the
VPN market with customised solutions, such as Mozilla VPN
or Brave Firewall + VPN, protection for VPN users against
website-fingerprinting attacks has become more relevant. We
therefore investigate whether we can instead place the de-
ployment and evolution of website-fingerprinting defences
within the purview of the client, that is, without the explicit
cooperation of servers or proxies.

Contributions We observe that since enacting a website-
fingerprinting defence involves reshaping the communication
both from and to the client, then doing so without modifying
remote endpoints must be done through manipulation of the
network protocols already being used to communicate. In this
regard, we explore the recent development, and already broad
deployment, of the QUIC transport protocol as an exciting

opportunity to enhance user privacy. QUIC’s independent,
multiplexed byte-streams and control-message variety pro-
vide rich features on which to base our framework, and its
location in user space allows defences based upon it to be inde-
pendently deployed for individual applications. Furthermore,
QUIC is being widely adopted, as HTTP/3 – the upcoming
HTTP standard – will only be implemented atop the QUIC
protocol and notably does not use TCP.

In this work, we design and evaluate a client-side frame-
work for implementing various website-fingerprinting de-
fences without requiring any changes to the remote server or
additional network services. Our QUIC client-side defence
framework (QCSD) is built upon QUIC and HTTP/3 and
uses these protocols to induce the server into cooperating
with a client-orchestrated defence, specified as either a packet
schedule or state machine. QCSD achieves this cooperation
using two observations. First, HTTP requests are idempotent
and web servers often host resources beyond those needed by
any single web page. These resources can thus be repeatedly
requested to provide a constant supply of chaff traffic from
the server to the client. Second, QUIC connections multiplex
individual byte streams, each of which may be independently
flow-controlled. This flow control allows an endpoint to indi-
cate to its peer when it is ready to receive data. We leverage
this flow control to communicate to the server when to send
bursts of application data, chaff data, or both. Through careful
management of these chaff resources and individual streams,
we create a framework that can orchestrate many website-
fingerprinting defences in the literature from the client.

As case studies, we enacted both the FRONT [18] and
Tamaraw [22] defences in QCSD, collected live-defended
datasets totalling over 100,000 web-page loads, and evaluated
the efficacy of our QCSD-enacted defences against the Deep
Fingerprinting [12], Var-CNN [15], and k-fingerprinting [9]
website-fingerprinting attacks. Our comparisons between the
simulated defences and those crafted by QCSD show that our
framework is able to emulate defences solely from the client,
with privacy benefits akin to their conceptualised forms, and
offers further examples of the differences that arise between
live-defended and simulated website-fingerprinting defences,
highlighting a need for more accurate simulations.

2 Background and Related Work

In this section, we introduce website fingerprinting, existing
attacks and defences, our threat model, the QUIC and HTTP/3
protocols, and the requirements for enacting a defence.

2.1 Website Fingerprinting
In website fingerprinting, the goal of an observer is to identify
the website fetched over an encrypted channel based solely on
side-channel information, such as those derived from packet
sizes and timestamps [4]–[17], [28]. Website fingerprinting

has been investigated both in the setting of anonymity net-
works, such as Tor [1], as well as in the setting of encrypted
proxies and VPNs, our focus in this work. To identify the
website, the observer classifies a feature vector that is derived
from the trace of loading a web page of the website. This
classification is based on finding similarities between this fea-
ture vector and features of previously observed and labelled
traces in the attacker’s training set. In this process, a label
corresponding to the most likely website is assigned, or no
label if previously seen traces are too dissimilar.

Closed and open worlds The efficacy of website finger-
printing is evaluated in either the closed- or open-world set-
tings [4], [8]–[17]. In the closed-world setting, the trace is
known to be from one of n monitored websites, whereas in the
open-world setting, it belongs to either one of the n monitored
websites or to some unmonitored website. In this latter set-
ting, used in our evaluations, the task to identify the monitored
website (or if it is an unmonitored website) better emulates the
real world where a trace may be from an unknown website.

Attacks Early website-fingerprinting attacks utilised statis-
tical analyses [5], [6], and analyses using only the inferred
sizes of HTML pages and resources [7]. Subsequent attacks
evolved to leverage machine learning classifiers. These in-
clude a k-nearest neighbour (k-NN) based-classifier [8], the
k-fingerprinting (k-FP) classifier based on k-NN and random
forests [9], hidden Markov models [10], and stream-matching
algorithms [13], [17]. These attacks are further enhanced
through features extracted from the traces using detailed fea-
ture analyses [9], [29]–[31]. The most recent attacks [11],
[12], [14]–[16] utilise neural networks and have achieved
accuracy rates above 94% in closed-world settings of 900
websites with encrypted, padded network traffic [11]. Our
prior work has also confirmed the efficacy of these attacks in
the QUIC-over-VPN setting [32].

To evaluate our framework, we employ the k-FP [9], Deep
Fingerprinting [12], and Var-CNN [15] classifiers as examples
of traditional and deep learning attacks, since they have been
shown to be among the most effective attacks [14], [18], [32].

Defences Numerous website-fingerprinting defences have
been proposed, particularly for the Tor anonymity network,
which differ in their means of defending the communica-
tion, their overhead, and their requirements for infrastructure
or pre-existing knowledge. Table 1 provides an overview of
these defences. The first category, chaff-only defences, defend
by solely adding padding and chaff traffic to the communi-
cation and thus do not delay the loading of the web page.
For example, the WTF-PAD defence uses chaff traffic to ob-
scure long breaks between bursts of incoming or outgoing
packet [21], whereas the FRONT defence adds a random
amount of chaff packets in each direction, with an emphasis

Table 1: Website-fingerprinting defences categorised by
whether their mechanism operates on a static predetermined
schedule, a static schedule with a transmission-dependent stop
point, or a dynamic schedule. Also indicated is whether the
defence would be emulatable within our framework. GLUE
is not emulatable as it operates between connections.

Defence Schedule Emulatable

Chaff-only
Traffic Morphing [27] dynamic 3
WTF-PAD [21] dynamic 3
Cui 2018 [19] static 3
FRONT [18] static 3
GLUE [18] dynamic no*

Chaff and delay
Glove [33] static 3
Supersequence [8] static, dyn. end 3
Walkie Talkie [20] static 3
CS-BuFLO [23] dynamic 3
BuFLO [24] static, dyn. end 3
Tamaraw [22] static, dyn. end 3
HTTPOS [25] – no

Other
Decoy [26] – no
TrafficSliver [34] – no
Henri 2020 [35] – no

on obscuring the feature-rich head of the communication [18].
As a promising step forward, Tor has since implemented a
derivative of WTF-PAD [21], [36] along with a framework
for experimenting with other padding approaches [37]. Unfor-
tunately, WTF-PAD has already been shown to be vulnerable
to website-fingerprinting attacks [12], [15].

The second category, chaff-and-delay defences, shape the
communication towards a target pattern by adding padding,
chaff traffic, splitting, and delaying the packets sent to and
from the client. Among these defences, BuFLO [24], CS-
BuFLO [23], and Tamaraw [22] offer high levels of privacy
at the cost of high bandwidth and delay overhead. Tamaraw,
for example, transmits fixed-size packets at a constant rates
from the client and from the server. Defences such as Super-
sequence [8] and Walkie Talkie [20] group web pages into
anonymity sets such that a common target pattern can be
found that reduces the shaping overhead.

All of the above defences rely on shaping the traffic both
to and from the client, and have thus been thought to be
reliant on client-side and server/proxy-side deployment. How-
ever, our framework, QCSD, enables the use of such defences
with only client-side deployment. We investigate QCSD’s
ability to emulate chaff-only and chaff-and-delay defences,
with the FRONT and Tamaraw defences respectively as ex-
emplars. FRONT is one of the few chaff-only defences still

effective against modern website-fingerprinting attacks [18];
whereas Tamaraw, a chaff-and-shape defence, offers similar
protection to transmitting at constant rate with lower overhead.
Appendix A describes these defences in more detail.

The HTTPOS [25] defence adds random chaff and delays
to the communication through TCP and HTTP manipulation.
Similarly to our work, it does so primarily from the client but
requires proxies and intermediaries to enable shaping TCP,
which is implemented in the kernel. Our work however, unlike
HTTPOS, does not create a specific defence strategy but rather
provides the tools with which website-fingerprinting defences
can be enacted from the client. Finally, Decoy by Panchenko
et al. [26] is unique in that it neither adds chaff nor delay but
instead loads another web page in the background as a decoy.

Other related work The TrafficSliver defence [34] and the
use of multihoming by Henri et al. [35] send traffic over differ-
ent network paths to limit the data observed by an adversary.
These approaches could be combined with QCSD, should
they be deployed in a manner supporting QUIC.

Other QUIC-based privacy efforts include the MASQUE
mechanisms [38], which allow multiple proxied stream- and
datagram-based flows inside QUIC-HTTPS connections. This
is similar to the HTTP CONNECT method that allows proxy-
ing via an HTTP server over TCP, and does not provide active
deterrence against website-fingerprinting attacks.

2.2 Threat Model

We consider an adversary who attempts to determine the web-
site associated with a traffic trace, through analysing only
packet sizes and timings. This setting occurs when the client
uses privacy-enhancing technologies, such as anonymity net-
works (e.g., Tor) or VPN tunnels (e.g., Wireguard, Open-
VPN, or IPSec), encrypted wireless communication (e.g.,
IEEE 802.11i WPA), or when the adversary wants to identify
a visit to a particular web page of interest on a website (e.g.,
the page related to a medical condition on a medical website).

Additionally, we inherit the simplifying assumptions used
throughout the attack literature [11], [14]–[16], [39] to re-
main consistent in our use of website-fingerprinting attacks in
the evaluation of our framework. That is, we conservatively
assume that (1) an observer can identify the start and end
of a web-page load, and can thus extract its trace from the
overall traffic; (2) web pages are loaded sequentially without
background noise such as media or file transfers; and (3) the
page of interest is the index page of the domain. Wang and
Goldberg [4] and Cui et al. [40] provide evaluations of these
assumptions; however, as we focus on defending against an
empowered adversary capable of realising these assumptions,
inheriting them allows us to both remain consistent with prior
works as well as to highlight any differences between concep-
tualised defences and their implementations in QCSD.

2.3 QUIC and HTTP/3

QUIC is a new connection-oriented transport protocol layered
upon UDP. Originally designed by Google with the intent of
speeding up the Web [41], it was rapidly deployed by large
content providers such as Cloudflare [42], Akamai [43], and
Facebook [44] before being standardised by the Internet En-
gineering Task Force [45]. QUIC provides reliable, in-order
delivery of data similar to TCP, but differs in several ways:

Versioned, user space protocol The QUIC protocol is lay-
ered upon UDP and implemented in user space. This, along
with its use of versioning, version negotiation, and extensions
allows the protocol to evolve and avoid ossification.

Always encrypted QUIC packets are always encrypted.
This encryption encompasses both the payload and header
with the exclusion of the connection identifiers and flags nec-
essary for decoding and decrypting the packet.

Framed data and control Transmitted data and control
messages, such as acknowledgements and flow control, are en-
capsulated in frames which are bundled together and placed in
packets. QCSD utilises the QUIC padding frame (PADDING),
which is a repeatable, single-byte frame that is discarded upon
receipt, and the ping frame (PING), which forces the server to
acknowledge the packet containing it.

Multiplexed streams QUIC connections multiplex multi-
ple in-order byte streams over a single connection. The data
for each stream is first encapsulated with a STREAM frame
before being placed in a packet. A single packet can therefore
contain data corresponding to multiple streams. A STREAM
frame with the FIN bit set marks the end of the stream.

Independent flow control Each QUIC stream is indepen-
dently flow controlled. The maximum-stream-data value is
an offset from the start of the stream until which the remote
endpoint can send data. It can be increased by sending a
MAX_STREAM_DATA frame with a higher offset to the remote
endpoint. The amount of data that an endpoint is allowed to
send on the stream is called its flow-control credits.

The standardisation of QUIC brought with it the standard-
isation of the HTTP/3 protocol [46]. HTTP/3 is the next
generation of the Hypertext Transfer Protocol that underlies
the web and will be solely transported via QUIC. It defines
the semantics for using HTTP with QUIC, such as each QUIC
stream transporting a single HTTP request and response. Fur-
thermore, HTTP/3 demarcates HTTP headers and payloads
by encapsulating them in frames with prefixed lengths [46].

2.4 Defence Preliminaries
Designing a generalised framework for enacting the aforemen-
tioned defences requires a representation of network traffic
and understanding the building blocks of a defence. In re-
questing a web page, a browser contacts one or more web
servers to request and receive the HTML of the main page
as well as any web resources required to properly display the
web page. The resulting ordered sequence of packets seen on
the network, across an individual or multiple connections, is
called a trace.

Definition 2.1. A packet trace, or simply trace, P, of length n
can be uniquely described as a sequence of packet timestamps,
lengths, and directions:

P =
(
(t1, l1,d1), . . . ,(tn, ln,dn)

)
where ti ∈ R≥0 is the relative timestamp of the i-th packet,
with t1 = 0; li ∈Z≥ is a non-negative integer denoting the size
of the packet, and di ∈ {0,1} is the direction of the packet
(either from or to the client, i.e., outgoing or incoming).

Additionally, a trace may be represented as a pair of one-
dimensional aggregated time series, one for each direction,

Definition 2.2. An aggregated time series, Td∈{0,1}, of the
direction d of trace P with granularity I, is a sequence of
packet lengths:

Td = (x1,x2, . . . ,xm)

where xi is the sum of all the packet lengths with timestamps ti
within the half-open time interval [(i−1) · I, i · I) and with the
specified direction, or 0 if no packets fell within that interval.

Building blocks of a defence QCSD aims to emulate ex-
isting defences in the literature, thus we must establish the
functionality required to do so. A defence M is a mechanism
that takes an input trace, P, and alters it to create a new trace
P′. We can understand the necessary functionality of M by
investigating the ways in which P and P′ may differ. Consider
w.l.o.g. x and x′ at the same index in incoming time series rep-
resentations Td=1 and T ′d=1. There are three cases. First, when
x′ = x the defence M does not perturb the input sequence at
that time interval. Second, when x′ > x the packet to be trans-
mitted must be padded by x∆ = (x′−x) bytes. Furthermore, if
x = 0 this equates to sending an additional x∆ = x′ bytes when
no packet was present in the input sequence. And third, when
x′ < x, then the input packet is too large, and must reduced in
size, sending x′ bytes in that interval. If x′ = 0 this equates to
preventing the transmission of any data at that time interval.

From the above formulation, the requirements for an expres-
sive defence framework are clear. A defence framework that
emulates a defence M must be able to (1) send chaff packets,
(2) pad packets, (3) split packets, and (4) delay the sending
of packets from the client and server. Below we describe our
formulation of such a framework, QCSD.

3 A QUIC Client-Side Defence Framework

We design a QUIC client-side defence framework (QCSD)
that enables implementing complete website-fingerprinting
defences solely from the client.

3.1 Overview
QCSD allows shaping transmissions on HTTP/3-QUIC con-
nections in both directions, whether to or from the client,
according to the configured website-fingerprinting defence.
Additionally, QCSD’s design aims to (1) provide website-
fingerprinting resilience similar to that of the stipulated de-
fence, (2) avoid adding additional data and delays to the
connection beyond required by the defence, and (3) allow
server interoperability by being standards compliant with the
QUIC [45] and HTTP/3 [46] specifications.

To enact arbitrary defences, QCSD utilises standardised
features of QUIC and HTTP/3 to provide the building blocks
of website-fingerprinting defences, identified in Section 2.4.

3.1.1 Sending Chaff and Padding Packets: PADDING,
PING, and Chaff Streams

QCSD performs padding in the client-to-server direction us-
ing QUIC’s PADDING and PING control frames. These frames
allow sending arbitrary amounts of null-valued data from the
client – from a few bytes padding a packet to entire packets
of only chaff data – which is discarded by the receiver. As a
result of QUIC’s pervasive encryption, these control frames
are bitwise indistinguishable from normal application data.

In order to pad and chaff in the server-to-client direction,
QCSD leverages the facts that HTTP GET requests are idem-
potent [47]–[49] and that servers host numerous resources
beyond those required for the loading of any single web
page. Additionally, as per the HTTP/3 standard [46], a single
HTTP/3 request-response cycle is conducted upon a single
stream and QUIC may place data from individual streams
of a connection into the same packet [45]. Together, these
allow us to construct, track, and manage streams of chaff data
from the server to the client, on which padding and chaff data
can be requested independently of application data. We term
these streams chaff-streams to differentiate them from the
application streams carrying the HTTP data of the web page.

3.1.2 Splitting and Delaying: Stream Flow Control

QUIC’s implementation as a user-space protocol allows us
to control transmissions from the client to the server, with-
out modifying the operating system or making changes that
would impact other applications at the client. We can therefore
choose how much data and when to send packets originating
from the client in accordance with the defence.

For data originating from the server, QCSD utilises the fact
that QUIC multiplexes individual streams within a connection,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 t(s)

Control
interval

Pin

Pout

send MSD{si,L}

send MSD{s j,2 ·L}

send MSD{sk,3 ·L}

immediately send 1×PING, (l−1)×PAD

Figure 1: A simplified example of the events generated by
QCSD to add chaff traffic to a connection according to the
chaff-only defence trace P = Pout∪Pin, with packets of length
L, length l ≤ L, and chaff streams si, s j, and sk.

where each stream is individually flow-controlled. Delaying
packets is accomplished through individual, fine-grained ma-
nipulation of this stream-based flow control. A server will
only send data for a stream if it has flow control credits for that
stream. QCSD uses QUIC’s MAX_STREAM_DATA (MSD) frame
to incrementally provide flow control credits to the server on
individual streams, which allows delaying or releasing data
according to the defence. QCSD splits data to be received as
a consequence of this approach, since it releases exactly how
much data it would like to receive.

This results, however, in manipulating bursts of bytes which
are delivered in one or more packets, instead of in individual
packets. Frequently releasing small amounts of flow-control
credit would enable finer-grained shaping, perhaps at sub-
packet level bursts. However, servers may choose to aggre-
gate received flow credit, thereby limiting such fine-grained
manipulation. For example, a server that receives two releases
of 600 bytes of flow credit within a short span of time may
aggregate its available flow credit and send a single 1200-byte
response, instead of two 600-byte responses. QCSD therefore
does not send these releases at microsecond frequencies, but
instead aggregates the releases at the client and signals the
server every few milliseconds. As we show in Section 5, de-
spite aggregating releases QCSD is able to effectively emulate
defences from the literature.

3.1.3 Putting it All Together

Figure 1 shows a simplified example of the QUIC packets and
events generated by QCSD to add chaff traffic to a connection
according to a trace P. These events occur in parallel with
the regular communication between the client and the server.
Trace events for the outgoing direction are immediately satis-
fied by the client by sending additional packets, padded with
PING and PADDING frames to create packets of the desired

Undefended FRONT-QCSD Tamaraw-QCSD

0 1 2 3 4 5 6 7

Time (s)

1500

750

0

750

1500

P
ac

ke
ts

iz
e

(b
yt

es
)

0 1 2 3 4 5 6 7

Time (s)

0 1 2 3 4 5 6 7

Time (s)

Outgoing

Out Target

Incoming

In Target

O
ut

go
in

g
In

co
m

in
g

download completed

Figure 2: Packet times and sizes for https://www.pcgamingwiki.com/ and dependent QUIC resources when collected using a
simple, undefended client vs. shaped with QCSD towards the FRONT and Tamaraw defences. Packet time distributions compared
to the target defences are shown above. Packets below 150 bytes (250 bytes with Tamaraw) are not shown.

length, L. Events for the incoming direction are aggregated
at the client for a control interval (0.1 s in this example but
around 0.005 s in practice) and the data is pulled on an ap-
propriate chaff stream at the end of each control interval by
sending MAX_STREAM_DATA from the client to the server. For
a chaff-and-shape defence, the outgoing packets would also
contain the HTTP data required for regular communication,
and the streams selected for incoming data would include
application streams in addition to chaff streams.

Examples of QCSD shaping the index page and resources
of https://www.pcgamingwiki.com/ towards the FRONT [18]
and Tamaraw [22] defences are shown in Figure 2 compared
to the original traffic pattern and the target schedules gen-
erated by the defences. In the next section we describe the
design of QCSD and its shaping algorithm in more detail.

3.2 Orchestrating the Defence

QCSD accepts a target trace P corresponding to a defence, a
mode of operation m, and a control time interval I. The target
trace P may be either a static schedule of packet timestamps
and sizes, or may be dynamically generated by the defence
at runtime. While QCSD supports both types of targets, for
simplicity we describe its operation in terms of a static sched-
ule. The mode m is one of two modes as indicated by the type
of defence: “chaff-only” or “chaff-and-shape”. In chaff-only
mode, the trace P defines the cover traffic to be added to the
incoming and outgoing communication. In chaff-and-shape
mode, P is the target trace of the overall communication and
the traffic is delayed, padded, and otherwise reshaped towards
this trace. Table 1 shows an overview of the modes associ-
ated with various website-fingerprinting defences. Finally, the
control interval I defines how frequently flow-control credits
may be released to the server. It balances the granularity of
shaping against the overhead of the control messages.

3.2.1 Preparing the QUIC Connection

During initialisation, QCSD modifies the transport param-
eters of the underlying QUIC connection, which are nego-
tiated between the client and server. It reduces the initial
flow-control credit from the server to the client for all bidirec-
tional streams to only 16 bytes. Bidirectional streams trans-
port HTTP/3 requests and responses and thus setting a low
initial flow-control credit prepares the streams for shaping by
preventing unscheduled transmissions from the server. This
is required for chaff-streams in the case of chaff-only mode,
and for both chaff and data streams in chaff-and-shape mode.
Consequently, each time the client opens a new application
(non-chaff) stream to the server in chaff-only mode, QCSD
immediately increases the flow control to their non-restricted
levels with a MAX_STREAM_DATA frame.

3.2.2 The Core Control Loop

Algorithm 1 outlines the central logic for shaping a connection
towards the target trace P for the defence and is called with
the current time after every control interval I, or at the time
indicated by the next event in P. It operates on the events of
P, that is, the tuples of time, size, and direction of data to be
sent or received as indicated by the defence.

Shaping begins by determining whether to pull data from
the server to the client for any previously unsatisfied incoming
events, pulling as much data as needed or available across
open application and chaff streams. Next, it processes each
event with a timestamp within the last control interval. QCSD
uses data from application streams and chaff streams to fulfil
these events. Application streams are only manipulated by
QCSD when reshaping the connection (chaff-and-shape) and
are shaped in the same manner as chaff streams. Where pos-
sible, QCSD prioritises data from application streams over
chaff streams to reduce the impact of the defence on the load-

Algorithm 1 Orchestrate the defence corresponding to trace
P with mode m at the current time now. The variable ci_end is
the end of the scheduled incoming control interval, astreams,
cstreams are the set of application and chaff streams resp.;
and backlog≥ 0 is the previously unfulfilled incoming data.

1: procedure RUNDEFENCE(P, m, now, ci_end, backlog,
astreams, cstreams)

2: pull← 0
3: prev_ci_end← now− (now mod I)
4: if ci_end ≤ now then
5: ci_end← prev_ci_end + I
6: pull← backlog
7: backlog← 0
8: end if
9: while P has an event with a time before now do

10: event← next event of P
11: if event.dir = outgoing and m = chaff-and-shape then
12: SENDPACKETOFSIZE(event.size)
13: else if event.dir = outgoing and m 6= chaff-and-shape then
14: SENDCHAFFPACKETOFSIZE(event.size)
15: else if event.time≤ prev_ci_end then
16: pull← pull + event.size
17: else
18: backlog← backlog+ event.size
19: end if
20: end while
21: if pull > 0 then
22: if m = chaff-and-shape then
23: pull← pull−PULLON(astreams, pull)
24: end if
25: pull← pull−PULLON(cstreams, pull)
26: backlog← backlog+ pull
27: end if
28: if m = chaff-and-shape, ISDONE(P), and backlog = 0 then
29: CLOSECONNECTION()
30: end if
31: return backlog,ci_end
32: end procedure

ing time of the web page. Next, QCSD prepares to pull data
to satisfy events for the incoming direction if their times were
within the last control interval, otherwise they are aggregated
to be pulled at the end of the current control interval.

Pushing data and chaff For outgoing events of size x bytes,
QCSD uses either pending data on open application and chaff
streams or QUIC PADDING and PING frames to satisfy them.
For a chaff-and-shape defence, QCSD constructs a QUIC
packet of at most x bytes with any pending application data
or control frames. If the data that was pending to be sent
on these streams was insufficient, the remaining data is sent
using QUIC’s PADDING and PING frames. In the case of chaff-
only defences, QCSD constructs and sends a QUIC packet
of x bytes with only PADDING and PING frames. Each frame
is 1 byte in length and may be repeatedly added to a packet.

While PADDING frames would be sufficient to send the re-
quired chaff, placing a PING frame in the packet ensures that
the packet will be acknowledged by the server (packets with
only PADDING frames are not acknowledged), thereby mim-
icking application data from the client.

Pulling data and chaff For incoming events of size x bytes
of a chaff-and-shape defence, QCSD requests data from the
server on open application streams with pending data, fol-
lowed by open chaff streams. In chaff-only defences, data is
requested only on chaff streams as application streams freely
send their data. For each stream i, QCSD tracks the current
value of the maximum stream data allowed to the server, msdi,
as well as the total amount of data known to be available on
the stream, limiti, through observing received headers and
QUIC frames (see Appendix B.3). The difference between
these two values, ai = limiti−msdi, is the available capacity
of that stream to provide data. QCSD selects n application and
chaff streams with available capacities a1, . . . ,an, to provide
the required amount of data, that is a1 + · · ·+ an ≤ x. Next
QCSD allows the server to send data on each of these streams
by sending a MAX_STREAM_DATA frame with the new value
msdi + ai. The server then responds with the data from the
various streams aggregated across multiple packets.

Since all outgoing messages are regulated in chaff-and-
shape mode, if the defence does not currently also send an
outgoing packet, then a small packet of 150 bytes is con-
structed to transmit the control message. To have the ar-
rival of the data accurately match the defence schedule, the
MAX_STREAM_DATA frames would need to be sent 1 round-
trip-time (RTT) before they are expected. The RTT tracked by
QUIC’s congestion control algorithm could be used to deter-
mine when to send the control frame. However, for the sake
of simplicity we assume zero-RTT in our implementation.

Unlike the outgoing direction with its PADDING frames, the
incoming direction cannot ensure that it will be able to pull
all of required data. The amount of data that remains to be
pulled is recorded and pulled in a subsequent control interval.

Finishing shaping Finally, once there are no more events
for shaping either direction of a chaff-and-shape defence
the connection is closed, as expected of defences like Tama-
raw [22] and Supersequence [8]. For chaff-only defences, the
application continues transmitting until it completes.

3.3 Chaff Streams
A chaff stream is a QUIC stream opened by the client over
which an idempotent resource, tangential to the loading of the
web page, is requested and delivered using an HTTP/3 GET
request-response cycle. Chaff streams leverage two properties
of QUIC: stream-based flow control and bundling of stream
data. Individual stream-based flow control allows an endpoint
to specify how much data it is willing to receive over a stream,

and to prioritise data from particular streams. By manipulating
the stream-based flow control, QCSD requests data from an
individual chaff stream as necessary. QUIC’s framing allows
frames from multiple streams to be bundled in a single packet.

Our motivation to use chaff-streams within our framework
derives from the limitations of the other potential sources of
chaff in the HTTP/3-QUIC stack – namely arbitrary, control,
or retransmitted data – and is discussed in Appendix B.1.

3.3.1 Chaff Stream Management

Although chaff streams provide a potentially large of amount
of chaff, they required overcoming a number of difficulties
including identification of potential chaff resources, discovery
and tracking of the amount of data available on a stream, and
maintaining a pool of chaff streams to provide sufficient chaff.

We envisage that the client caches historical information
regarding available resources for a given origin, possibly with
their sizes. This information aids in the crafting of the de-
fence at the start of the connection, and thus improves the
user’s privacy, but is not required for QCSD to operate. Each
time the client sends a GET request QCSD records the as-
sociated URL and headers. Once the fetch of the URL has
been fulfilled, QCSD is aware of the amount of HTTP data
that was received on that stream. Using this information,
it estimates how much data would be available on a sub-
sequent request for that URL. Previously requested URLs
are ranked according to their HTTP payload length and are
re-requested to provide available chaff data. Additionally, out-
going requests for chaff resources specify the identity encod-
ing HTTP header (“Accept-Encoding: identity”), which
ensures that returned content is uncompressed, thereby max-
imising the amount of data received for each request.

At the beginning of the connection and each time a chaff
stream closes, QCSD opens 5–20 streams or as many as will
allow it to have around 1 MB of chaff available to request.
Appendix B.3 provides more details on the tracking and con-
trolling of chaff streams.

3.4 Shaping Multiple Connections

The mechanisms used by QCSD naturally extend to shape
the multiple connections required to download a web page.
Consider a defence target P to be applied across n connections
c1, . . . ,cn, each with an arbitrary number of streams. Shaping
these connections equates to assigning each event E generated
by P to a single connection. That is, for each event E of bytes
that should be sent or pulled, QCSD selects a connection ci to
satisfy that event. Since QCSD tracks the amount of pending
incoming and outgoing data on each stream (Section 3.2.2,
Appendix B.3), it can select the connection based on the
availability of data (e.g., the total pending across all streams
for a given connection is more than required by the event).

Given multiple connections with sufficient pending bytes to
satisfy the event, the question arises as to how to prioritise the
assignment of the event to a connection. While we consider
the selection and evaluation of such scheduling algorithms
beyond the scope of this work, Yu and Benson observed pro-
duction servers multiplexing QUIC streams in a round-robin
fashion [50] and thus we round-robin schedule connections.
For a given event, the scheduler checks the pending bytes
of each connection in turn and assigns the event to the first
connection ci with sufficient capacity. For the next event, it
begins its checks from connection ci+1 thereby giving each
connection an equal chance of being assigned an event and
allowing simultaneous transfer across all connections. We
discuss future work on scheduling approaches in Section 7.

4 Dataset Collection

To evaluate QCSD, we implemented a prototype in an
HTTP/3-QUIC library and used it to collect datasets of web-
page loads defended with FRONT and Tamaraw.

4.1 Implementation

We implemented a prototype of QCSD in Mozilla’s Neqo
HTTP/3-QUIC client library, which is used in the Firefox
browser and written in the Rust programming language [51].
Additionally, we implemented a test client that uses the li-
brary to emulate the loading of a web page. It downloads the
web page’s HTML and resources over one or more QUIC
connections while using a pre-generated resource dependency
graph to maintain dependency and timing relationships among
resources. Emulating the dependencies this way enabled mim-
icking the complex loading of modern web pages while sim-
plifying our evaluation (see Appendix C for details).

Since QCSD is solely client side and QUIC is a user-space
transport protocol, we were able to restrict our implementation
to the Neqo user-space library. Along with the implementa-
tions of the FRONT and Tamaraw defences in QCSD, each
under 200 lines of code, our prototype adds around 3,500 lines
of code to the Neqo HTTP/3-QUIC client library. It is avail-
able from our repository (https://github.com/jpcsmith/
neqo-qcsd).

4.2 Datasets

To evaluate QCSD, we collected several datasets with our test
client across two settings. In the first setting, undefended, we
downloaded the web pages without any defence applied. In
the second setting, defended, we configured QCSD to shape
connections towards either the FRONT or the Tamaraw de-
fence. We collected the following datasets in the undefended,
FRONT-defended, and Tamaraw-defended settings:

https://github.com/jpcsmith/neqo-qcsd
https://github.com/jpcsmith/neqo-qcsd

• Distance datasets (Ddist) For distance-based evalua-
tions, we collected datasets of single traces in each set-
ting for each of 500 unique domains.

• ML single-connection datasets (Dconn) For machine-
learning evaluations, we collected single-connection
open-world datasets of 20,000 samples, split across 100
monitored domains and 10,000 unmonitored domains
using our test client in each setting.

• ML multi-connection datasets (Dmc) Additionally,
we collected open-world multi-connection datasets of
11,000 samples, split across 100 monitored domains and
1000 unmonitored domains in each setting.

• ML full-page datasets (D f ull) Finally, we collected a
set of datasets on full web-page loads. These datasets
are of the same composition as Dconn but were collected
in the undefended and FRONT-defended settings only.

The datasets consist of packet sizes and timings of web pages
from domains in the Alexa top 1m list [52] that support QUIC.
We collected the traces through Wireguard VPN gateways,
deployed in New York City, USA; Frankfurt, Germany; and
Bengaluru, India, to provide a variety of network conditions.
For the full-page datasets, D f ull , we orchestrated the FRONT
defence on the full web page by loading the given web page
using the Chromium browser and, over the same encrypted
VPN tunnel, we added chaff traffic using QCSD with chaff
resources from the primary web page.

To apply the FRONT defence, QCSD randomly generated
the chaff-schedule using the parameters Ns = Nc = 1000
(1300 in Dmc, D f ull), Wmin = 0.5s, Wmax = 7s (0.2 s and
3 s in D f ull), and chaff-packets of 1200 bytes (1250 bytes
in Dmc, D f ull). These were adapted from the original pa-
per [18] to account for reduced latency in our VPN setting
and high attack performance against the simulated setting.
For Tamaraw, QCSD used parameters similar to the original
paper: ρout = 0.020, ρin = 0.005, L = 300, and packets of
750 bytes in Ddist [22] and 1200 bytes–1250 bytes otherwise.
Appendix C provides further collection details.

Simulated setting Finally, we generated a third setting, sim-
ulated, which simulates the defence as proposed in the lit-
erature on undefended traces, for comparison with QCSD’s
live-defended traces. FRONT simulations combined the chaff-
trace generated in the defended setting with the correspond-
ing undefended web-page trace. Tamaraw simulations are
the packet schedules generated in the defended setting, as
chaff-and-shape defences specify the expected final trace. We
accounted for the RTT between the client’s transmission of
a command and our observation of the server’s response by
shifting the times of the chaff-schedule (FRONT) or defended
trace (Tamaraw) in the server-to-client direction. This shift
was between 0 ms and 200 ms and minimised the Euclidean
distance between the simulated and defended traces.

5 Shaping Case Studies: FRONT & Tamaraw

We evaluated QCSD’s ability to accurately pad or shape
HTTP-QUIC connections to two website-fingerprinting de-
fences from the literature: FRONT [18] and Tamaraw [22].
Using the distance datasets Ddist , we measured the similarity
between each defended trace and its simulated counterpart, as
well as the incurred bandwidth and latency overheads.

Trace similarity We measured the similarity between the
aggregated time series (Definition 2.2) of the defended and
simulated settings using Pearson’s correlation coefficient r
and the longest common subsequence measure (LCSS). Pear-
son’s r measures linear correlation between two sets of data,
and has been used in flow correlation attacks on Tor [53], [54].
LCSS was designed to compare noisy time series data and
thus fits well to our use case [55]. Being less common, we
describe LCSS below and assume familiarity with Pearson’s r.

Definition 5.1. Longest Common Subsequence (LCSS) [55] is
a measure of similarity between two time series that is robust
to noise. It is given by

Sδ,ε(x,y) =
LCSSδ,ε(x,y)
min{|x|, |y|}

where LCSSδ,ε denotes the length of longest matching sub-
sequence between each direction of the simulated and de-
fended aggregated time series x and y, of lengths |x| and |y|,
and when allowing some elements to be unmatched. LCSSδ,ε

pairs entries at most δ entries forward or backward in time,
and considers them a match if their difference is at most ε.
The measure Sδ,ε ranges from 0 to 1 with 1 representing the
greatest similarity. We set ε to 150 bytes to disregard server
control packets and framing and left δ unconstrained.

Bandwidth and latency overheads We used the defini-
tion of bandwidth and latency overheads present in the lit-
erature [8], [18], [20]. They are calculated as the increase
relative to the number of transmitted bytes or duration of the
undefended communication and are thus unitless. In the case
of the latency overhead, the duration of the defended com-
munication is until the last application packet, as the user’s
experience of delay is unaffected by trailing chaff traffic.

5.1 Chaff-Only Defence ‘FRONT’
We evaluated the FRONT defence as an exemplar of chaff-
only defences, that is, those that obscure the web page by
solely adding chaff traffic to the trace.

QCSD closely emulates FRONT Pearson’s r and LCSS
between the QCSD-defended and simulated time-series, ag-
gregated at various granularities, are shown in Figure 3a. Pear-
son’s r shows increasing correlation strength with larger gran-
ularities, from a weak correlation (r < 0.3) at 5 ms to medium

1 5 25 50

Sampling rate (ms)

– 0.25
0.00
0.25
0.50
0.75
1.00

S
co

re

Pearson’s r

1 5 25 50

Sampling rate (ms)

LCSS

Server → Client Client → Server

(a) FRONT

1 5 25 50

Sampling rate (ms)

– 0.5

0.0

0.5

1.0

S
co

re

Pearson’s r

1 5 25 50

Sampling rate (ms)

LCSS

(b) Tamaraw

Figure 3: Pearson’s r and LCSS between QCSD-collected and
simulated time series, aggregated at various sampling rates.

(0.3 < r < 0.5) and strong (r > 0.5) correlations in the incom-
ing and outgoing directions respectively at 50 ms granularity.
This increasing trend arises from scheduling and network con-
ditions causing small differences in time between the schedule
and when a packet is sent or observed, and thus becomes less
pronounced at higher granularities. The overall pattern of sent
and received chaff therefore matches the target schedule.

LCSS reports high similarity between the defended and
simulated time series (Figure 3a), as it is better tailored to our
noisy environment. At both 1 ms and 5 ms granularities LCSS
indicated that both the defended and simulated time series
were transmitting similar amounts of bytes (within ε = 150)
for over 85% of the intervals. The decrease at higher granular-
ities is likely due to the aggregation of multiple packets within
a single interval in the calculation. For example, two control
packets aggregated in an interval expected to be empty would
no longer be within ε of 0 bytes. Nevertheless, the ability
of QCSD to closely emulate FRONT is apparent in the high
LCSS score at 5 ms, the control interval used to pulled chaff.

FRONT emulation incurs small overheads Next, we mea-
sured the latency and bandwidth overhead incurred by QCSD
when emulating FRONT. The bandwidth overhead, shown in
Table 2, slightly increased from 1.17 in the simulated setting
to 1.43 in the defended setting. There are two reasons for this
increase. First, unlike in the simulated setting we send control
packets from the client and receive acknowledgements from

Table 2: Median overheads and their lower and upper quartiles
for FRONT and Tamaraw. Simulation overheads marked with
∗ were computed using Cai et al.’s Tamaraw simulation [22].

FRONT Tamaraw

Bandwidth
Defended 1.43 (0.58–5.86) 4.16 (1.43–10.6)
Simulated 1.17 (0.48–4.99) 3.09 (0.90–8.35)

– ∗0.58 (0.20–2.44)
Latency

Defended −0.12 (−0.22–0.05) 8.43 (3.61–17.3)
Simulated 0.00 ∗2.34 (0.69–6.98)

the server, in addition to other control messages necessary for
maintaining the connection. We could reduce this overhead
by bundling control messages with outgoing chaff as opposed
to sending them as normal application traffic. Second, since
we cannot construct the packets at the server, we pull the full
amount of the desired chaff as stream data, which is addi-
tionally encapsulated with QUIC and STREAM_FRAME headers.
This overhead could be reduced by estimating header lengths
and reducing the amount of chaff requested accordingly.

In the case of the latency overhead, Table 2 shows that
both the simulated and QCSD approaches have overheads
near zero, as the addition of chaff packets does not affect the
original transmission duration. The small negative latency
is likely due to network variations across the defended and
undefended settings as the interquartile range spans zero.

5.2 Shaping Defence ‘Tamaraw’

At the other end of the defence spectrum lies heavy-weight
defences such as Tamaraw [22], which add chaff and shape
the traffic from the client and the server to constant rates.

QCSD successfully emulates Tamaraw In Figure 3b, we
can see both Pearson’s r and LCSS scores for the simulated
and defended time series for Tamaraw. Pearson’s r reports
median correlations of medium strength (∼0.5) in the direc-
tion from client to server at 25 ms and 50 ms granularities.
The negative Pearson’s r in the outgoing direction is indica-
tive of a phase-shift between the compared time series, and
can occur, for example, when an odd number of packets are
aggregated in an interval in one series but an even in another.

In contrast, LCSS reports high similarities in excess of
0.87 in both the outgoing and incoming directions at 1 ms
granularity and around 0.5 at 5 ms granularity. Insufficient
data at the server, server aggregation of responses into unequal
packets, such as of 1300 bytes and 200 bytes as opposed
to two 750-byte packets, as well as network jitter resulting
in multiple packets arriving in the same interval likely all
contribute to the reduction in the similarity score.

Large bandwidth overheads are even larger Tamaraw’s
bandwidth overheads are shown in Table 2. The already large
bandwidth overhead of 3.09 times the undefended transmis-
sion size in the simulated setting is further increased to 4.16
when emulated with QCSD. This increase of around 30%
above that of the simulated setting is similar to the increase
encountered in FRONT and results from the addition of the
control messages necessary to coordinate with the server. In
the case of Tamaraw however, the control messages that are
sent every 5 ms to the server cannot be bundled with outgo-
ing scheduled packets, as those occurring every 20 ms. At
these intervals, QCSD sends QUIC packets of 150 bytes to
ensure that control messages are delivered to the server. Since
MAX_STREAM_DATA control frames have variable length but
are at most 17 bytes, and as multiple such frames may be sent
in a control packet, profiling for frequently used control frame
sizes or bounding the number of streams used to request data
in each interval could reduce this overhead. We discuss the
overhead difference between the live-generated schedule and
the simulated overhead [22] below with the latency overhead.

Tamaraw’s latency overhead diverges from the literature
The latency overhead, shown in Table 2 for QCSD’s emula-
tion of Tamaraw, is a surprising 8.43 times as long as in the
undefended case. By contrast, the latency overhead computed
using Cai et al.’s Tamaraw simulation reports an expected
overhead of only 2.34 in the median.1 A similar divergence
is also seen in the bandwidth overhead. There are two pri-
mary reasons for this. First, some web pages do not declare
resource lengths and fragment them across multiple HTTP/3
data frames. In this case, QCSD cannot determine the length
of the resource a-priori and must cautiously releases data on
the stream. This primarily affects non-chaff resources in chaff-
and-shape defences, as chaff-resource lengths can be cached
and chaff-only streams do not throttle other resources. Second,
incoming and outgoing directions were simulated indepen-
dently. In reality however, delays in downloading the HTML
of the web page then delays requests for dependent resources
which themselves delay the fulfilment of those resources by
the server: delays ripple throughout both directions. There-
fore, higher transmission rates than used in simulations would
be required to achieve lower latency overheads.

6 Defending against WF Attacks at the Client

Similarity measures cannot capture whether QCSD defences
deter website-fingerprinting attacks. We therefore evalu-
ated QCSD’s ability to defend against modern attacks – k-
fingerprinting (k-FP) [9], Deep Fingerprinting (DF) [12], and
Var-CNN [15] – in the open-world setting.

1We use Cai et al.’s simulation as a simulation derived from the Tamaraw
schedule would have the same latency overhead as the defended setting.

0.0 0.5 1.0

Recall

0.0

0.5

1.0

π
20

k-FP

0.0 0.5 1.0

Recall

DF

0.0 0.5 1.0

Recall

Var-CNN

QCSD Simulated Undef.

(a) QCSD-FRONT and simulated FRONT

0.0 0.5 1.0

Recall

0.0

0.5

1.0

π
20

k-FP

0.0 0.5 1.0

Recall

DF

0.0 0.5 1.0

Recall

Var-CNN

(b) QCSD-Tamaraw and simulated Tamaraw

Figure 4: r20-precision-recall curves of attacks on single-
connection datasets defended with simulations or QCSD.

We trained these attacks on datasets from two scenarios:
single connections and full web-page loads. For each dataset,
we trained on an 80 % stratified split with modest tuning of
the classifier hyperparameters from the original papers (see
Appendix D). We additionally supplied them with vectors of
signed packet sizes (DF and Var-CNN), packet timestamps
(Var-CNN), and 165 engineered size- and time-related fea-
tures [9] (k-FP). We then tested on the remaining 20 % of the
dataset and measured recall and precision.

Definition 6.1. Recall or true-positive rate is the fraction of
monitored websites labelled as the correct monitored website.

Definition 6.2. The precision of a classifier on a given dataset
is the fraction of correct monitored website claims. As this
is implicitly coupled to the number of positive and negative
samples in the dataset, we use Wang’s r-precision (πr) [39]
which adjusts precision to an explicit ratio of monitored to
unmonitored websites. We use r = 20 corresponding to 1
monitored website visit for every 20 unmonitored websites,
consistent with Wang [39].

6.1 Defending Single Connections

To determine QCSD’s capability in defending against these at-
tacks, we evaluated them on single-connection datasets Dconn.

QCSD effectively defends with FRONT Figure 4a shows
the precision and recall of the attacks against FRONT in the
single-connection setting. Against all three attacks, the level
of defence provided by QCSD-orchestrated FRONT is at least
that of simulated FRONT. Against an adversary prioritising re-
call, QCSD reduced precision below 0.2 for recall above 0.75;
whereas for an adversary prioritising precision, it reduced re-
call to below 0.3 for precision above 0.75. Furthermore, in
all cases, QCSD provided significantly better defence when
compared to the undefended setting, where for 0.75 recall it
reduced the precision from over 0.85 to under 0.20. QCSD’s
improved performance against Var-CNN when compared to
the simulation is likely due to the volatility of time feature
vectors in the presence of the added control packets.

Inexact server control hinders Tamaraw In contrast to
the chaff-only defence FRONT, QCSD fails to match the
chaff-and-shape defence Tamaraw in its ability to render the
attacks ineffectual. When orchestrated with QCSD, and de-
spite reducing either precision or recall to below 0.4 (DF and
Var-CNN) and 0.7 (k-FP) when prioritising the other, QCSD
did not achieve Tamaraw’s featureless transmission. With a
constant outgoing transmission rate, the obvious source of
this discrepancy is the inexact shaping from the server. Refine-
ments of the approaches used in QCSD are possible and could
improve the performance of a near-constant rate defence such
as Tamaraw. Even so, QCSD-Tamaraw provides protection
when compared to the undefended setting, reducing precision
by 0.6 at recall values in excess of 0.75, and could be bol-
stered with support to ensure exact-length packets from the
server, as discussed in Section 7.

6.2 Defending Full Web-Page Loads

When loading a web page, the browser may open multiple
connections to different web servers to request the various
resources that constitute the web page. In this section, we
evaluate the ability of QCSD to defend full web-page loads,
consisting of resources downloaded on multiple connections
from different servers, in two scenarios. First, we evaluated
the ability of our simple multi-connection QCSD client to de-
fend against attacks when shaping multiple QUIC connections
towards the FRONT and Tamaraw defences (Dmc). Second,
we evaluated QCSD’s ability to defend against attacks when
loading the entire web page through the browser (QUIC and
TCP resources), by crafting FRONT on a single-connection
towards the same web server (D f ull).

QCSD defends multi-connection loads Figure 5 shows
attack precision and recall against traces defended with
QCSD across multiple connections. Similarly to the single-
connection setting, when defending with FRONT, QCSD was
able to significantly reduce attack precision and recall scores.

0.0 0.5 1.0

Recall

0.0

0.5

1.0

π
20

k-FP

0.0 0.5 1.0

Recall

DF

0.0 0.5 1.0

Recall

Var-CNN

QCSD Simulated Undef.

(a) QCSD-FRONT across multiple connections.

0.0 0.5 1.0

Recall

0.0

0.5

1.0

π
20

k-FP

0.0 0.5 1.0

Recall

DF

0.0 0.5 1.0

Recall

Var-CNN

(b) QCSD-Tamaraw across multiple connections

Figure 5: r20-precision-recall curves on the undefended and
QCSD-defended multi-connection datasets.

By contrast, Tamaraw effectively defended against DF but did
not offer comparable performance against k-FP and Var-CNN.

Examination of feature importances in k-FP’s underlying
random-forest indicated that variance in incoming packet
sizes and total incoming data were among the top features
used for classification of QCSD-defended Tamaraw. There are
two primary reasons for this. The first is discrepancy between
the resource sizes recorded in the dependency graph, which
was used to determine chaff resources (Appendix B.2), and
their size during the evaluation. When the lengths of chaff
resources in the cache were overestimated (e.g., a resource
unexpectedly delivering an HTTP 404) the difference would
leak size information. This discrepancy arose from selecting
resources requiring cookies, javascript, being dynamic, etc.,
and could be addressed with better identification of chaff re-
sources when integrating with a browser. The second is due
to accommodating servers that do not respond with data un-
less they have been provided with some minimum amount
of flow credits (Appendix B.3). This leads to QCSD, for ex-
ample, providing 1500-bytes of flow credit and the server
responding with only 800-bytes at the end of the stream. This
leakage could be potentially mitigated by identifying these
servers and using coarse grained shaping with them and more
fine-grained shaping with well-behaving servers. We discuss
further improvements in Section 7.

Overall, the clear reductions in attack performance confirm
the feasibility of extending QCSD to shaping the multiple con-

0.0 0.5 1.0

Recall

0.0

0.5

1.0

π
20

k-FP

0.0 0.5 1.0

Recall

DF

0.0 0.5 1.0

Recall

Var-CNN

QCSD Simulated Undef.

Figure 6: r20-precision-recall curves for classifiers trained on
browser web-page loads defended with QCSD-FRONT.

nections required to load full web pages, and exhibits similar
overheads to the single-connection setting (see Appendix E).

QCSD defends browser web-page loads When applied to
browser web-page loads, QCSD reduced attack efficacy as
seen in Figure 6. QCSD’s emulation of FRONT reduced the
recall of k-FP from 0.95 to only 0.4 at high precisions. Against
the deep-learning classifiers, at 0.90 precision it reduced the
recall from around 0.95 to 0.10 against Var-CNN and to 0.35
against DF. For an adversary interested instead in high recall,
such as 0.90, it reduced the precision from over 0.90 to under
0.35 against both DF and Var-CNN, although Var-CNN was
able to maintain higher levels of precision at high recall values.
Given the high performance of the deep-learning attacks on
the simulated defence, however, better selection of parameters
for FRONT could not only improve the defence, but also
QCSD’s orchestration of it; and further supports the feasibility
of using QCSD to defend web-page loads against website-
fingerprinting attacks.

7 Discussion

Our QUIC client-side website-fingerprinting defence frame-
work, QCSD, has shown great promise in defending web
pages loaded in the VPN setting. In this section, we discuss
further potential improvements to QCSD, its use with other
protocols, suggested extensions to QUIC, and limitations.

Shaping multiple connections Although QCSD naturally
extends to the multi-connection setting, future work is needed
to explore algorithms for scheduling the defence across the
connections. For example, Cloudflare has been observed se-
quentially scheduling QUIC streams as opposed to the round-
robin approach used by Google and Facebook [50]. Further-
more, prioritising connections that deliver non-terminal re-
sources (those resulting in more HTTP requests) or that speed
up rendering of the web page could improve user experience
despite the presence of a website-fingerprinting defence.

Embracing the noise QCSD shaping of incoming traffic
is fundamentally inexact and exhibits better performance for
the noise-based defence, FRONT, when compared to the reg-
ularized defence, Tamaraw. For regularized defences, noised
variants which perturb the regularized streams, for example,
by reducing or increasing the requested amount of chaff or
dropping chaff requests, could help to reduce information
leakage in these settings when used with QCSD.

Use with other protocols QCSD’s approach to shape the
traffic from the server could be used with other application
protocols besides HTTP/3. The primary requirements would
be a common and idempotent method for the client to re-
quest data from the server and the possibility for the client to
determine the volume of incoming data on a stream.

Suggested extensions to QUIC Many of the challenges in
this work revolved around getting the server to send chaff
at the client’s behest. Despite TLS 1.2 already supporting
chaff data on connections, to date there has been no means
for an endpoint to request chaff from its remote peer. It is
also not possible to request that the peer pads packets to a
specified length. With the advent of QUIC and its ability for
rapid deployment of extensions, these two features could be
feasibly implemented as QUIC extensions. Together, they
would provide core building blocks for a client to defend
itself against network-based website-fingerprinting attacks.

A need for more accurate simulations Numerous defences
in the website-fingerprinting literature use simulation to eval-
uate their overhead [8], [18], [22]–[24]. For defences that only
add chaff traffic, such simulations can be an accurate means
of determining the overhead. However this approach is inac-
curate for defences that delay the traffic. Without considering
the dependency between incoming and outgoing packets it
is not possible to accurately estimate the impact caused by
the delay of a single packet on subsequent packets, and thus
the total time and bandwidth overhead of the defence. More
accurate estimations could be found by requiring either all
preceding packets, or those within some threshold to have
been transmitted under simulation before scheduling a packet,
thereby more accurately simulating the introduced delays.

Limitations Our approach has a few limitations. First, we
rely upon servers’ behaviour of adding multiple stream frames
to the same packet, and were otherwise unable to strictly
pad individual server packets, as opposed to bursts. Second,
servers may limit the number of streams that a client can open,
thus restricting the number of chaff streams. This, however,
can be mitigated by caching resource lengths across web-
page loads to most effectively utilise the available streams.
Third, we do not currently shape unidirectional streams from

the client or server. Unidirectional streams are used to sat-
isfy HTTP/3 push promises and to transfer HTTP/3 control
messages between the client and server. While we simply
disabled HTTP/3 push promises and allowed the settings to
be transmitted as normal, these streams could also be shaped
in a similar approach to bidirectional streams. And finally,
we did not shape resources that are loaded over TCP, but we
expect a general transition to and preference of QUIC for all
encrypted communication as more servers deploy QUIC.

8 Conclusions

In this work, we designed a QUIC client-side defence frame-
work (QCSD) that enables emulating website-fingerprinting
defences without requiring any changes to servers or the de-
ployment of new services. We implemented and evaluated
QCSD, which shows great promise in enabling clients to enact
defences from the browser or application, without needing to
make any changes to existing server stacks. Our evaluations
of QCSD show that not only can it orchestrate chaff defences
such as FRONT, matching both the chaff-specification and
the levels of protection provided by the conceptualised de-
fence, but also to orchestrate chaff-and-shape defences such
as Tamaraw. We anticipate that QCSD represents a promising
direction for future work on deployable defences.

Acknowledgements

We thank the anonymous reviewers for their many useful
suggestions, and in particular our shepherd, Matthew Wright,
whose insightful feedback greatly helped to improve the pa-
per. We gratefully acknowledge support from the ETH4D and
EPFL EssentialTech Centre Humanitarian Action Challenge
Grant. This work was also supported by the National Science
Foundation under grants CNS-1553437 and CNS-1704105,
and by the United States Air Force and DARPA under Con-
tract No. FA8750-19-C-0079. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the United States Air Force, DARPA, or any other
sponsoring agency.

References

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in 13th USENIX Security
Symp. (USENIX Security 04), Aug. 2004. [Online]. Available:
https://www.usenix.org/conference/13th-usenix-
security-symposium/tor-second-generation-onion-
router.

[2] O. Valentine. “VPN usage around the world in 2018,” Glob-
alWebIndex. (Jul. 2, 2018), [Online]. Available: https://
blog.gwi.com/chart-of-the-day/vpn-usage-2018/
(visited on Sep. 17, 2021).

[3] S. Feldman. “Entertainment is the main motivator for VPN
use,” GlobalWebIndex. (Nov. 19, 2018), [Online]. Available:
https://www.statista.com/chart/16142/vpn-use-
world/ (visited on Sep. 17, 2021).

[4] T. Wang and I. Goldberg, “On realistically attacking Tor with
website fingerprinting,” in Proc. Privacy Enhancing Tech-
nologies, Oct. 2016. DOI: 10.1515/popets-2016-0027.

[5] H. Cheng and R. Avnur, “Traffic analysis of SSL encrypted
web browsing,” University of California, Berkeley, Tech.
Rep., 1998. [Online]. Available: http://people.eecs.
berkeley.edu/~daw/teaching/cs261-f98/projects/
final-reports/ronathan-heyning.ps.

[6] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padman-
abhan, and L. Qiu, “Statistical identification of encrypted web
browsing traffic,” in Proc. 2002 IEEE Symp. on Security and
Privacy, May 2002. DOI: 10.1109/secpri.2002.1004359.

[7] A. Hintz, “Fingerprinting websites using traffic analysis,” in
Privacy Enhancing Technologies, 2003. DOI: 10.1007/3-
540-36467-6_13.

[8] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Gold-
berg, “Effective attacks and provable defenses for website
fingerprinting,” in 23rd USENIX Security Symp. (USENIX
Security 14), Aug. 2014. [Online]. Available: https : / /
www . usenix . org / conference / usenixsecurity14 /
technical-sessions/presentation/wang_tao.

[9] J. Hayes and G. Danezis, “k-fingerprinting: A robust scal-
able website fingerprinting technique,” in 25th USENIX
Security Symp. (USENIX Security 16), Aug. 2016. [On-
line]. Available: https : / / www . usenix . org /
conference/usenixsecurity16/technical-sessions/
presentation/hayes.

[10] Z. Zhuo, Y. Zhang, Z.-l. Zhang, X. Zhang, and J. Zhang,
“Website fingerprinting attack on anonymity networks based
on profile hidden Markov model,” IEEE Trans. Information
Forensics and Security, May 2018. DOI: 10.1109/TIFS.
2017.2762825.

[11] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and
W. Joosen, “Automated website fingerprinting through deep
learning,” in Proc. 2018 Network and Distributed Systems
Security Symp., 2018. DOI: 10.14722/ndss.2018.23105.

[12] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep Fin-
gerprinting: Undermining website fingerprinting defenses
with deep learning,” in Proc. 2018 ACM SIGSAC Conf. Com-
puter and Communications Security, 2018. DOI: 10.1145/
3243734.3243768.

[13] R. Attarian, L. Abdi, and S. Hashemi, “AdaWFPA: Adaptive
online website fingerprinting attack for tor anonymous net-
work: A stream-wise paradigm,” Computer Communications,
Dec. 2019. DOI: 10.1016/j.comcom.2019.09.008.

[14] S. E. Oh, S. Sunkam, and N. Hopper, “P1-FP: Extraction,
classification, and prediction of website fingerprints with deep
learning,” Proc. Privacy Enhancing Technologies, Jul. 2019.
DOI: 10.2478/popets-2019-0043.

https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://blog.gwi.com/chart-of-the-day/vpn-usage-2018/
https://blog.gwi.com/chart-of-the-day/vpn-usage-2018/
https://www.statista.com/chart/16142/vpn-use-world/
https://www.statista.com/chart/16142/vpn-use-world/
https://doi.org/10.1515/popets-2016-0027
http://people.eecs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://people.eecs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://people.eecs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
https://doi.org/10.1109/secpri.2002.1004359
https://doi.org/10.1007/3-540-36467-6_13
https://doi.org/10.1007/3-540-36467-6_13
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://doi.org/10.1109/TIFS.2017.2762825
https://doi.org/10.1109/TIFS.2017.2762825
https://doi.org/10.14722/ndss.2018.23105
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1016/j.comcom.2019.09.008
https://doi.org/10.2478/popets-2019-0043

[15] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN: A
data-efficient website fingerprinting attack based on deep
learning,” Proc. Privacy Enhancing Technologies, 2019. DOI:
10.2478/popets-2019-0070.

[16] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright,
“Triplet Fingerprinting: More practical and portable website
fingerprinting with N-shot learning,” in Proc. 2019 ACM
SIGSAC Conf. Computer and Communications Security, 2019.
DOI: 10.1145/3319535.3354217.

[17] A. Qasem, S. Zhioua, and K. Makhlouf, “Finding a needle
in a haystack: The traffic analysis version,” Proc. Privacy
Enhancing Technologies, 2019. DOI: 10 . 2478 / popets -
2019-0030.

[18] J. Gong and T. Wang, “Zero-delay lightweight defenses
against website fingerprinting,” in 29th USENIX Security
Symp. (USENIX Security 20), Aug. 2020. [Online]. Avail-
able: https : / / www . usenix . org / conference /
usenixsecurity20/presentation/gong.

[19] W. Cui, J. Yu, Y. Gong, and E. Chan-Tin, “Realistic cover traf-
fic to mitigate website fingerprinting attacks,” in 2018 IEEE
38th Int. Conf. Distributed Computing Systems (ICDCS), Jul.
2018. DOI: 10.1109/ICDCS.2018.00175.

[20] T. Wang and I. Goldberg, “Walkie-Talkie: An efficient de-
fense against passive website fingerprinting attacks,” in
26th USENIX Security Symp. (USENIX Security 17), Aug.
2017. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/
presentation/wang-tao.

[21] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “To-
ward an efficient website fingerprinting defense,” in Com-
puter Security – ESORICS 2016, 2016. DOI: 10.1007/978-
3-319-45744-4_2.

[22] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg,
“A systematic approach to developing and evaluating web-
site fingerprinting defenses,” in Proc. 2014 ACM SIGSAC
Conf. Computer and Communications Security, 2014. DOI:
10.1145/2660267.2660362.

[23] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A con-
gestion sensitive website fingerprinting defense,” in Proc.
13th Workshop Privacy in the Electronic Society, 2014. DOI:
10.1145/2665943.2665949.

[24] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-
a-boo, I still see you: Why efficient traffic analysis counter-
measures fail,” in Proc. 2012 IEEE Symp. on Security and
Privacy, May 2012. DOI: 10.1109/SP.2012.28.

[25] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang,
and R. Perdisci, “HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows,” in Proc. 2011
Network and Distributed Systems Security Symp., Feb. 6–9,
2011. [Online]. Available: https://www.ndss-symposium.
org/ndss2011/httpos-sealing-information-leaks-
with - browser - side - obfuscation - of - encrypted -
flows.

[26] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Web-
site fingerprinting in onion routing based anonymization net-
works,” in Proc. 10th Workshop Privacy in the Electronic
Society, 2011. DOI: 10.1145/2046556.2046570.

[27] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic Mor-
phing: An efficient defense against statistical traffic analy-
sis,” in Proc. 2009 Network and Distributed Systems Security
Symp., Feb. 8–11, 2009. [Online]. Available: https://www.
ndss- symposium.org/ndss2009/traffic- morphing-
efficient-defense-against-statistical-traffic-
analysis/.

[28] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine,
“Privacy vulnerabilities in encrypted HTTP streams,” in
Privacy Enhancing Technologies, 2006. DOI: 10 . 1007 /
11767831_1.

[29] J. Yan and J. Kaur, “Feature selection for website finger-
printing,” Proc. Privacy Enhancing Technologies, 2018. DOI:
10.1515/popets-2018-0039.

[30] S. Li, H. Guo, and N. Hopper, “Measuring information leak-
age in website fingerprinting attacks and defenses,” in Proc.
2018 ACM SIGSAC Conf. Computer and Communications
Security, 2018. DOI: 10.1145/3243734.3243832.

[31] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara,
and M. Wright, “Tik-Tok: The utility of packet timing in web-
site fingerprinting attacks,” Proc. Privacy Enhancing Tech-
nologies, 2020. DOI: 10.2478/popets-2020-0043.

[32] J.-P. Smith, P. Mittal, and A. Perrig, “Website fingerprinting in
the age of QUIC,” in Proc. Privacy Enhancing Technologies,
Jan. 29, 2021. DOI: 10.2478/popets-2021-0017.

[33] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke
website fingerprinting defense,” in Proc. 13th Workshop
Privacy in the Electronic Society, 2014. DOI: 10 . 1145 /
2665943.2665950.

[34] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S.
Reuter, J. Filter, T. Engel, K. Wehrle, and A. Panchenko, “Traf-
ficSliver: Fighting website fingerprinting attacks with traffic
splitting,” in Proc. 2020 ACM SIGSAC Conf. Computer and
Communications Security, 2020. DOI: 10.1145/3372297.
3423351.

[35] S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and P. Thi-
ran, “Protecting against website fingerprinting with multi-
homing,” Proc. Privacy Enhancing Technologies, 2020. DOI:
10.2478/popets-2020-0019.

[36] M. Perry and G. Kadianakis. “Tor padding specification,”
The Tor Project. (Jul. 6, 2020), [Online]. Available: https:
/ / github . com / torproject / torspec / blob / main /
padding-spec.txt.

[37] ——, “Circuit padding developer documentation,” The Tor
Project. (Sep. 14, 2020), [Online]. Available: https : / /
github . com / torproject / tor / blob / main / doc /
HACKING/CircuitPaddingDevelopment.md.

[38] D. Schinazi and L. Pardue. “Multiplexed application substrate
over QUIC encryption (masque).” (Jun. 14, 2020), [Online].
Available: https://datatracker.ietf.org/wg/masque/
about/.

https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.1145/3319535.3354217
https://doi.org/10.2478/popets-2019-0030
https://doi.org/10.2478/popets-2019-0030
https://www.usenix.org/conference/usenixsecurity20/presentation/gong
https://www.usenix.org/conference/usenixsecurity20/presentation/gong
https://doi.org/10.1109/ICDCS.2018.00175
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://doi.org/10.1007/978-3-319-45744-4_2
https://doi.org/10.1007/978-3-319-45744-4_2
https://doi.org/10.1145/2660267.2660362
https://doi.org/10.1145/2665943.2665949
https://doi.org/10.1109/SP.2012.28
https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-leaks-with-browser-side-obfuscation-of-encrypted-flows
https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-leaks-with-browser-side-obfuscation-of-encrypted-flows
https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-leaks-with-browser-side-obfuscation-of-encrypted-flows
https://www.ndss-symposium.org/ndss2011/httpos-sealing-information-leaks-with-browser-side-obfuscation-of-encrypted-flows
https://doi.org/10.1145/2046556.2046570
https://www.ndss-symposium.org/ndss2009/traffic-morphing-efficient-defense-against-statistical-traffic-analysis/
https://www.ndss-symposium.org/ndss2009/traffic-morphing-efficient-defense-against-statistical-traffic-analysis/
https://www.ndss-symposium.org/ndss2009/traffic-morphing-efficient-defense-against-statistical-traffic-analysis/
https://www.ndss-symposium.org/ndss2009/traffic-morphing-efficient-defense-against-statistical-traffic-analysis/
https://doi.org/10.1007/11767831_1
https://doi.org/10.1007/11767831_1
https://doi.org/10.1515/popets-2018-0039
https://doi.org/10.1145/3243734.3243832
https://doi.org/10.2478/popets-2020-0043
https://doi.org/10.2478/popets-2021-0017
https://doi.org/10.1145/2665943.2665950
https://doi.org/10.1145/2665943.2665950
https://doi.org/10.1145/3372297.3423351
https://doi.org/10.1145/3372297.3423351
https://doi.org/10.2478/popets-2020-0019
https://github.com/torproject/torspec/blob/main/padding-spec.txt
https://github.com/torproject/torspec/blob/main/padding-spec.txt
https://github.com/torproject/torspec/blob/main/padding-spec.txt
https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md
https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md
https://github.com/torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.md
https://datatracker.ietf.org/wg/masque/about/
https://datatracker.ietf.org/wg/masque/about/

[39] T. Wang, “High precision open-world website fingerprinting,”
in Proc. 2020 IEEE Symp. on Security and Privacy, May
2020. DOI: 10.1109/SP.2020.00015.

[40] W. Cui, T. Chen, C. Fields, J. Chen, A. Sierra, and E. Chan-
Tin, “Revisiting assumptions for website fingerprinting at-
tacks,” in Proc. 2019 ACM Asia Conf. Computer and Commu-
nications Security, 2019. DOI: 10.1145/3321705.3329802.

[41] J. Roskind, Experimenting with QUIC, 2013. [Online]. Avail-
able: https : / / blog . chromium . org / 2013 / 06 /
experimenting - with - quic . html (visited on Oct. 22,
2019).

[42] A. Ghedini and R. Lalkaka. “HTTP/3: The past, the present,
and the future.” (Sep. 2019), [Online]. Available: https:
//blog.cloudflare.com/http3-the-past-present-
and-future/ (visited on Oct. 22, 2019).

[43] M. Yakan and A. Jayaprakash. “Introducing QUIC for
web content.” (Oct. 31, 2019), [Online]. Available: https:
/ / developer . akamai . com / blog / 2018 / 10 / 10 /
introducing-quic-web-content.

[44] M. Joras and Y. Chi. “How Facebook is bringing QUIC to
billions,” FACEBOOK Engineering. (Oct. 21, 2020), [Online].
Available: https://engineering.fb.com/2020/10/21/
networking- traffic/how- facebook- is- bringing-
quic-to-billions/.

[45] J. Iyengar and M. Thomson, QUIC: A UDP-based multi-
plexed and secure transport, RFC 9000, May 2021. DOI:
10.17487/RFC9000.

[46] M. Bishop, “Hypertext transfer protocol version 3 (HTTP/3),”
Internet Engineering Task Force, Internet-Draft draft-ietf-
quic-http-27, Feb. 2020. [Online]. Available: https : / /
tools.ietf.org/html/draft-ietf-quic-http-27.

[47] R. Fielding and J. Reschke, “Hypertext transfer protocol
(HTTP/1.1): Semantics and content,” RFC Editor, RFC 7231,
Jun. 2014. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc7231.txt.

[48] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer
protocol version 2 (HTTP/2),” RFC Editor, RFC 7540, May
2015. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc7540.txt.

[49] R. T. Fielding, M. Nottingham, and J. Reschke, “HTTP se-
mantics,” IETF Secretariat, Internet-Draft draft-ietf-httpbis-
semantics-16, May 2021. [Online]. Available: https://
www.ietf.org/archive/id/draft- ietf- httpbis-
semantics-16.txt.

[50] A. Yu and T. A. Benson, “Dissecting performance of produc-
tion quic,” in Proceedings of the Web Conference 2021, 2021.
DOI: 10.1145/3442381.3450103.

[51] Mozilla Corporation. “Neqo, an implementation of QUIC
written in Rust.” (Oct. 9, 2020), [Online]. Available: https:
//github.com/mozilla/neqo.

[52] Alexa top 1M sites, Alexa Internet, Inc., Jul. 18, 2021. [On-
line]. Available: http : / / s3 . amazonaws . com / alexa -
static/top-1m.csv.zip.

[53] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright, “Timing
attacks in low-latency mix systems,” in Financial Cryptogra-
phy, 2004.

[54] V. Shmatikov and M.-H. Wang, “Timing analysis in low-
latency mix networks: Attacks and defenses,” in Computer
Security – ESORICS 2006, 2006.

[55] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering
similar multidimensional trajectories,” in Proc. 18th Int. Conf.
Data Engineering, Feb. 2002. DOI: 10.1109/ICDE.2002.
994784.

[56] P. Probst, M. N. Wright, and A.-L. Boulesteix, “Hyperpa-
rameters and tuning strategies for random forest,” WIREs
Data Mining and Knowledge Discovery, 2019. DOI: https:
//doi.org/10.1002/widm.1301.

A Website-Fingerprinting Defences

In this section we define the defences used throughout the
paper in more detail.

FRONT The FRONT defence by Gong and Wang [18]
obfuscates the feature rich front segment of communication
without otherwise delaying the traffic sent by the endpoints. It
does so by adding nc and ns chaff packets from the client and
server respectively with timestamps selected according to the
Rayleigh distribution, so as to prioritise adding the packets at
the beginning of the communication. These timestamps are
given by

f (t;w) =

{
t

w2 e−t2/2w2
t ≥ 0,

0 t < 0

for wc,ws ∼ U (Wmin,Wmax), nc ∼ U{1,Nc}, and ns ∼
U{1,Ns} sampled from continuous and discrete uniform dis-
tributions with defence parameters Nc,Ns,Wmin,Wmax.

Tamaraw The Tamaraw defence by Cai et al. [22] sends
traffic in fixed-size packets (750 bytes) and at fixed intervals.
Tamaraw sends packets from the client to the server at a rate
of ρout seconds per packet, and from the server to the client at
a rate of ρin seconds per packet. The values ρin and ρout are
chosen such that ρin < ρout, since web servers often have more
data to transmit than web clients. Additionally, in Tamaraw,
the number of packets sent in each direction is padded to a
multiple of L packets. This helps mask the total transmission
time of web pages, and partitions the set of all web pages into
anonymity sets based on their transmission time.

B Selecting and Using Chaff

In this section, we motivate QCSD’s use of chaff resources
and describe the selection of chaff resources and the process
behind tracking and controlling streams.

https://doi.org/10.1109/SP.2020.00015
https://doi.org/10.1145/3321705.3329802
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://developer.akamai.com/blog/2018/10/10/introducing-quic-web-content
https://developer.akamai.com/blog/2018/10/10/introducing-quic-web-content
https://developer.akamai.com/blog/2018/10/10/introducing-quic-web-content
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://doi.org/10.17487/RFC9000
https://tools.ietf.org/html/draft-ietf-quic-http-27
https://tools.ietf.org/html/draft-ietf-quic-http-27
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
https://www.ietf.org/archive/id/draft-ietf-httpbis-semantics-16.txt
https://www.ietf.org/archive/id/draft-ietf-httpbis-semantics-16.txt
https://www.ietf.org/archive/id/draft-ietf-httpbis-semantics-16.txt
https://doi.org/10.1145/3442381.3450103
https://github.com/mozilla/neqo
https://github.com/mozilla/neqo
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://doi.org/10.1109/ICDE.2002.994784
https://doi.org/10.1109/ICDE.2002.994784
https://doi.org/https://doi.org/10.1002/widm.1301
https://doi.org/https://doi.org/10.1002/widm.1301

B.1 Rejected Sources of Chaff
There are three possible sources of data that a server may trans-
mit as chaff or padding: arbitrary (e.g., random or constant-
valued), control, or application data. QUIC provides PADDING
frames of null data but QUIC endpoints are unable to request
that these frames be sent by their remote peer. Additionally,
although QUIC has an assortment of control frames that may
be sent from the server in response to a message from the
client, none of these control frames invoke a sizeable response
from the server without an equally sized message from the
client. We therefore leverage application data to provide chaff
traffic from the server to the client.

Application data can take two forms, either new data or
retransmissions. Retransmissions are performed by the re-
mote endpoint if data is considered lost, and is employed in
HTTPOS [25] as a means of adding chaff to a connection.
Each loss event, however, results in a reduction of the trans-
mission rate from the server. Not only does this rate reduction
negatively impact the ability to generate more chaff packets,
and thus to shape the connection, but an adversary may also
be able to identify the chaff due to the change in transmission
rate. Furthermore, QUIC detects losses at the granularity of
packets, not bytes of data, we would therefore need to induce
packet losses that sum towards our desired amount of chaff.
Consequently, we leverage new data in form of chaff streams
to pad bursts and add chaff traffic originating from the server.

B.2 Selecting Chaff Resources
In our evaluations, we utilised the knowledge of the resources
from the collected dependency graphs to select the initial
resources used to provide chaff, namely, the resource type and
observed length. Given a potential set of chaff resources, we
prioritised images, as they are relatively static and can provide
large amounts of data when uncompressed, followed by fonts,
scripts, and style-sheets, and finally HTML documents, as they
may be dynamically generated. In a real-world deployment,
information about the potential chaff resources located at a
domain, along with HTTP cache-control details, could be
cached from previous connections to the domain, and would
thus be available to QCSD at the start of a new connection.

B.3 Tracking and Controlling Streams
Accurately shaping a connection requires knowledge of the
amount of data available at the remote server. QCSD therefore
tracks information about application and chaff streams that
are opened by the client and the framework. It considers a
stream to be either throttled or unthrottled. A throttled stream
is a stream for which QCSD controls the server’s release of
data, such as a chaff stream or an application stream being
manipulated. An unthrottled stream is one that is not being
manipulated, but for which we would like to track the resource
length, such as all application streams in chaff-only mode.

Figure 7 shows the state transitions of the receiving side of
a stream tracked by QCSD. QCSD begins tracking a stream
once an HTTP-GET request has been prepared for a resource,
and a new QUIC stream has been created at the client to
transfer the request. Tracking ends once the FIN bit has been
received or an error is encountered on that stream.

Throttled streams When the first byte is sent on a throttled
stream, QCSD considers it to be receiving HTTP/3 headers.
In this state, data is slowly released until the length of the
resource is discovered. QCSD discovers the length of the
resource when the stream encounters the length of an HTTP/3
data frame which signifies the start of the HTTP payload. At
this point the stream is considered to be throttled but receiving
data. The resource of a throttled stream that never arrives at
the receiving data state has no length and is thus avoided
when re-requesting resources on future chaff streams.

To receive data on a throttled stream while shaping the
connection, QCSD increases the amount of flow-control
credit provided to the server on that stream by sending a
MAX_STREAM_DATA (MSD) frame with the new limit. In the
ideal world, the client would know exactly how much data is
available at the server to be pulled. Unfortunately, in reality
the size of the stream is often unknown, which can result in
requesting more data than the stream is able to provide. The
difference between the amount requested and the data pro-
vided leaks information about the length of a stream. To avoid
this, for each throttled stream QCSD tracks the current amount
of flow control that has been released to the server, msd, the
maximum amount of data it knows to be available on the
stream, limit, and the amount of data consumed, c. As data is
read from the QUIC stream at the receiver QCSD increases c;
and each time that an HTTP/3 frame header is parsed indicat-
ing the length of the HTTP/3 frame, QCSD updates the known
length of the stream, limit, accordingly. This knowledge is
further supported by the HTTP content-length header that,
if provided in the response header from the server, identifies
the length of the resource that will be transmitted. The dif-
ference between the amount we know to be available and
the current max stream data offset, i.e., limit −msd, is the
available capacity of that stream to be used for shaping.

At times, servers may refuse to send any data for a stream
unless some minimum amount of flow credit is available. We
therefore specify a value, excess, that defines an amount of
data that QCSD assumes the server will have available on
the stream, beyond the known outstanding volume of data.
QCSD ensures that limit is always at least c+excess, thereby
allowing the client to provide MSD to the server to send any
remaining data. Discovery and tracking of the amount of
data to be delivered on the stream allows us to limit the role
this plays in transmission, as for most of the transmission
limit� c+ excess.

Throttled

Created

Receiving
Headers

Receiving
Data

Unthrottled

Closed

HTTP-GET
queued

First byte sent /
limit← excess, d← 0,

msd← 16, c← 0

First byte sent / d← 0,
send MAX_STREAM_DATA{∞}

needs ≥ x bytes of header / A1
client consumed x bytes / A2

“content-length: x” header / A3
PULLDATA(x) / A4

HTTP/3 data-frame
len. x / A1, d += x

FIN bit or error

HTTP/3 data-frame len. x / A1, d += x
client consumed x bytes / A2

PULLDATA(x) / A4

FIN bit or error

HTTP/3 data-frame len. x / d += x

FIN bit or error

Figure 7: State transitions for chaff and application streams in QCSD. Denoted are the current max stream data offset, msd,
the amount of bytes believed to be available at the server, limit, the amount of data consumed by the client on the stream,
c, and the amount of data observed on the stream, d. Annotations are of the form “triggering event / resulting action”, with
the actions marked as A1–A4 denoting A1: limit ← max{limit,c+ x}; A2: c← c+ x, limit ← max{limit,c+ excess}; A3:
limit←max{limit,x}; and A4: msd← msd +max{limit−msd,x}, send MAX_STREAM_DATA{msd}.

Unthrottled streams When the first byte is sent on
an unthrottled stream, QCSD immediately sends a
MAX_STREAM_DATA frame to increase the low initial max
stream data offset set during initialisation. The max stream
data offset is increased to allow the server to send as much
data on the stream as in an unmodified QUIC connection.
Further releases of max stream data is then handled by the
original QUIC client logic. QCSD also begins tracking the
amount of HTTP payload seen on that stream. Once this
has been determined, the resource that was loaded over that
unthrottled stream can be re-requested on a chaff stream.

C Further Details on Dataset Collection

QCSD shapes live QUIC connections and thus required a
collection of QUIC-enabled web pages on which to be evalu-
ated. We therefore identified a set of domains from the Alexa
top 1m list [52] that supported QUIC and which version of
the protocol each supported. To do so, we requested the web
page in Python using HTTPS over TCP and recorded the
HTTP alt-svc record with which web servers identify other
supported protocols. We then filtered the results to web pages
that advertised the “h3-29” tag, i.e. HTTP/3 over IETF QUIC
draft-version 29, as this was the latest version supported by the
underlying QUIC library that we used. Certain domains, such
as *.blogspot.com and *.appspot.com, proved prevalent
in our results and were therefore downsampled. Next, we
requested these web pages using QUIC in Chromium (com-

mit 870763) and logged the resources requested during the
loading of the page. From these logs, we created a depen-
dency graph of requested resources. We considered a URL
A a dependency of URL B if A was an HTTP referrer of B,
if A initiated the request of B (such as through include state-
ments in CSS), or if B’s request was the result of a sequence
of JavaScript function calls that included the script at URL
A. We filtered this graph to only URLs with the same origin
of the final redirected URL (and thus be requested over the
same connection) and removed graphs that redirected to the
same page. Finally, these dependency graphs were passed
to our test client to collect the actual network trace; and for
each trace, we recorded the packet sizes and timestamps at
the client using the tcpdump network monitoring utility.

D Hyperparameter Optimisation

For each of the three machine-learning evaluation scenar-
ios (single-connection, multi-connection, and full web-page
loads), we performed modest hyperparameter tuning to ex-
plore the potential for improvements in the attacks against
QCSD defended traces. For each attack and dataset we per-
formed a grid search over the selected hyperparameters and
measured the mean F1-score (using r20-precision and recall)
for each parameter combination using 3-fold cross-validation.

For the k-fingerprinting attack the parameters selected were
the number of nearest-neighbours {2,3,6} used to vote on a
class label and, in the underlying random forest, the number

Table 3: Median overheads and their lower and upper quartiles
for FRONT and Tamaraw in the multi-connection setting.
Simulation overheads marked with ∗ were computed using
Cai et al.’s Tamaraw simulation [22].

FRONT Tamaraw

Bandwidth
Defended 1.29 (0.60–3.45) 6.13 (3.17–13.12)
Simulated 0.90 (0.39–2.40) 4.88 (2.47–10.92)

– ∗0.86 (0.36–2.26)
Latency

Defended −0.05 (−0.15–0.08) 6.64 (2.98–11.86)
Simulated 0.00 ∗0.91 (0.17–2.92)

of estimators ∈ {100,150,200,250}, the number of sampled
features per estimator ∈ {2,12,20,30}, whether to use out-of-
bag scoring, and the fraction of samples on which to train each
estimator ∈ {0.5,0.75,0.9,1.0}, as they have been shown to
provide the greatest benefit [56]. Scoring all 384 parameter
combinations under 3-fold CV required around 40 minutes for
each defended and undefended dataset on a server equipped
with 2 Intel Xeon Gold 6242 CPUs (2.80 GHz, 64 cores).

For the time and size classifiers of the Var-CNN attack and
for the Deep Fingerprinting attack, we tuned the number of
packets used as features to these classifiers, as the defences
increased the number of packets transmitted and thus may
have shifted important features. We therefore evaluated each
classifier with 5000 (original), 7500, and 10000 packets. Scor-
ing all 3 parameter combinations under 3-fold CV for each
defended dataset and classifier required from 2 to 5 hours on
an NVIDA GeForce RTX 3060 (2021, 12 GB). Undefended
datasets were evaluated on parameters taken from the original
attack papers and so the measured efficacy of the attacks on
these datasets are more conservative.

E Overhead in the Multi-connection Setting

We evaluated the bandwidth and latency overhead in the multi-
connection setting by collecting 500 additional web pages.
For each defended version of the web page, an undefended
sample was collected immediately afterwards and the relative
increase in latency and bandwidth was calculated as described
in Section 5. The results shown in Table 3 are in accordance
with the shift from the single to multi-connection. For FRONT,
increasing the application data while sampling the amount of
chaff from the same distribution resulted in a slight decrease
in the relative bandwidth overhead. For Tamaraw, an increase
in the bandwidth overhead was observed with a decrease in
the latency overhead.

0 10000 20000 30000 40000 50000 60000 70000

Alexa domain rank

0.0

0.5

1.0

1.5

2.0

Fa
ilu

re
de

ns
ity

1e– 5

Figure 8: Distribution of the 586 failures across the ∼10,800
Alexa domains requested with FRONT. Samples in each bin
were weighted according to the frequency of QUIC domains
observed in that bin, and show a trend towards less popular
domains having more failures.

F Server Compliance with Shaping

Despite being complaint with the QUIC standard [45], QCSD
may encounter web servers whose parameters or configura-
tion prevents shaping of the connection. This may take the
form of, for example, insufficient stream numbers allocated by
the server, or connection closure due to server disagreement
with the QUIC transport parameters. We therefore recorded
the failure rate of web-page downloads when collecting the
datasets used for the single-connection machine-learning eval-
uations from Section 6.1.

Across the 10,790 web pages downloaded with FRONT,
only around 5.43 % of the attempted downloads failed that
did not also fail when not shaping the traffic. Meanwhile,
among the around 13,200 web pages that loaded with Tama-
raw, 5.81 % failed after accounting for timeouts in our collec-
tion procedure (22.70 % without), which were due to down-
loads exceeding 2-minutes as a result of the cumulative delays
introduced by Tamaraw, as discussed in Section 5. Further-
more, these failures had a higher density among the less pop-
ular Alexa domains, as seen in Figure 8.

With a failure rate less than 6 %, QCSD is accepted by most
servers that already deploy QUIC; and has greater potential
for deployment than existing website-fingerprinting defences.
Furthermore, since it utilises standard-compliant features of
the protocols, we anticipate that success rates will increase as
implementations transition towards the standard.

	Introduction
	Background and Related Work
	Website Fingerprinting
	Threat Model
	QUIC and HTTP/3
	Defence Preliminaries

	A QUIC Client-Side Defence Framework
	Overview
	Sending Chaff and Padding Packets: PADDING, PING, and Chaff Streams
	Splitting and Delaying: Stream Flow Control
	Putting it All Together

	Orchestrating the Defence
	Preparing the QUIC Connection
	The Core Control Loop

	Chaff Streams
	Chaff Stream Management

	Shaping Multiple Connections

	Dataset Collection
	Implementation
	Datasets

	Shaping Case Studies: FRONT & Tamaraw
	Chaff-Only Defence `FRONT'
	Shaping Defence `Tamaraw'

	Defending against WF Attacks at the Client
	Defending Single Connections
	Defending Full Web-Page Loads

	Discussion
	Conclusions
	Website-Fingerprinting Defences
	Selecting and Using Chaff
	Rejected Sources of Chaff
	Selecting Chaff Resources
	Tracking and Controlling Streams

	Further Details on Dataset Collection
	Hyperparameter Optimisation
	Overhead in the Multi-connection Setting
	Server Compliance with Shaping

