
NeVerMore: Exploiting RDMAMistakes in NVMe-oF Storage
Applications

Konstantin Taranov
ETH Zurich, Switzerland
ktaranov@inf .ethz.ch

Benjamin Rothenberger
ETH Zurich, Switzerland
rothenbb@inf .ethz.ch

Daniele De Sensi
ETH Zurich, Switzerland
ddesensi@inf .ethz.ch

Adrian Perrig
ETH Zurich, Switzerland
aperrig@inf .ethz.ch

Torsten Hoefler
ETH Zurich, Switzerland

htor@inf .ethz.ch

ABSTRACT
This paper presents a security analysis of the InfiniBand architec-
ture, a prevalent RDMA standard, and NVMe-over-Fabrics (NVMe-
oF), a prominent protocol for industrial disaggregated storage that
exploits RDMAprotocols to achieve low-latency and high-bandwidth
access to remote solid-state devices. Our work, NeVerMore, discov-
ers new vulnerabilities in RDMA protocols that unveils several
attack vectors on RDMA-enabled applications and the NVMe-oF
protocol, showing that the current security mechanisms of the
NVMe-oF protocol do not address the security vulnerabilities posed
by the use of RDMA. In particular, we show how an unprivileged
user can inject packets into any RDMA connection created on a
local network controller, bypassing security mechanisms of the
operating system and its kernel, and how the injection can be used
to acquire unauthorized block access to NVMe-oF devices. Overall,
we implement four attacks on RDMA protocols and seven attacks
on the NVMe-oF protocol and verify them on the two most popu-
lar implementations of NVMe-oF: SPDK and the Linux kernel. To
mitigate the discovered attacks we propose multiple mechanisms
that can be implemented by RDMA and NVMe-oF providers.

CCS CONCEPTS
• Networks → Network security; • Security and privacy →
Distributed systems security.

KEYWORDS
NVMe-oF security, RDMA security, SPDK, RDMA Spoofing

ACM Reference Format:
Konstantin Taranov, Benjamin Rothenberger, Daniele De Sensi, Adrian
Perrig, and Torsten Hoefler. 2022. NeVerMore: Exploiting RDMA Mistakes
in NVMe-oF Storage Applications. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’22), November
7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3548606.3560568

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560568

1 INTRODUCTION
Resource disaggregation is becoming an important tool in data
center design, splitting existing monolithic servers into a number
of consolidated single-resource pools that communicate over high-
speed interconnects. This approach improves the hardware resource
utilization and deployment flexibility as both the compute and
storage nodes can use different types of server hardware and can be
dimensioned independently. Despite these merits, disaggregation
opens up new attack vectors, as it is often implemented over low-
latency, high-bandwidth but untrusted networks.

The NVMe over Fabrics (NVMe-oF) protocol [18] is a leading
protocol for storage disaggregation, and it is offered and main-
tained by numerous storage and network vendors (Intel [5], Xil-
inx [38], Mellanox [36], Broadcom [11], and Pure Storage [31]).
NVMe-oF combines two recent high-performance techniques: NVM
Express (NVMe) [17] and Remote Direct Memory Access (RDMA).
NVMe-oF adopts RDMA connections to sendNVMe requests, which
are usually sent over PCIe to a local solid-state drive (SSD), over
a networking fabric with ultra-low latency of a few microsec-
onds. Even though RDMA networks enable low-latency and high-
bandwidth, they have been shown to suffer from security weak-
nesses [28, 30, 33, 37]. Key reasons are the lack of secure channels
and the exposure of memory access to remote parties. Despite these
risks, the security implications and dangers of deploying NVMe-oF
remain largely unstudied.

In this work, we introduce a series of attack tools that can be em-
ployed to attack any RDMA-enabled system (see Section 4). We show
that any system that tries to make use of RDMA opens an attack
surface allowing local users to bypass the security mechanisms of
the operating system and its kernel. Importantly, we show that any
unprivileged user can inject packets into RDMA connections cre-
ated on a local network controller, even if they are created in kernel
space. Hence, any system that uses RDMA from the kernel space
opens an attack surface allowing local users to manipulate RDMA-
enabled kernel modules, such as the NVMe-oF block device. In
addition, we show how an adversary can conduct denial-of-service
attacks by breaking, preventing, and slowing down RDMA connec-
tions through vulnerabilities in the RDMA connection manager,
RDMA resource sharing, and RDMA congestion mechanisms.

Given the discovered RDMA vulnerabilities, we then analyze the
security mechanisms of the NVMe-oF protocol as well as its imple-
mentations in the Storage Performance Development Kit (SPDK) [5]
and the Linux kernel [20] (see Section 5). Our analysis, NeVerMore,
covers a recently proposed security extension [17, 18] to NVMe-oF,

https://doi.org/10.1145/3548606.3560568
https://doi.org/10.1145/3548606.3560568

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Konstantin Taranov, Benjamin Rothenberger, Daniele De Sensi, Adrian Perrig, and Torsten Hoefler

Injection (Sec. 4.1)
User

application

RNIC

Kernel
module

RDMA
connection

RDMA
connection

injection path

Fake congestion (Sec. 4.2)

User
application

Kernel
module

injection path

Switch

Resource Exhaustion (Sec. 4.4)
User

application

RNIC

Kernel
module

Shared RDMA
resources

exhaustion path

RNIC
RNIC

Disconnection attack (Sec. 4.3)

User
App.

Kernel
module

injection path

Switch

RNIC RN
IC

Connection
m

anager

adversary hardware privileged process unprivileged process

Figure 1: Overview of proposed RDMA attacks.

which includes in-band authentication and secure channels using
IPsec. We show multiple vulnerabilities and flaws in the design and
implementation of the NVMe-oF protocol that are related to the
use of RDMA networking. In particular, we show how unprivileged
users can acquire block access to NVMe-oF devices and manipulate
stored and loaded data.

Consequently, although the storage industry is spending much
effort on implementing these security mechanisms for NVMe-oF,
vulnerabilities in the underlying implementation and design of the
InfiniBand architecture for RDMA networking can impair these
efforts. Thus, we believe that the security issues inherited by using
RDMA should be stressed to further influence the development of
NVMe-oF security mechanisms.

In summary, we propose four classes of attacks on RDMA pro-
tocols (see Figure 1) that enable seven different attack vectors on
the NVMe-oF protocol, allowing an unprivileged adversary to ma-
nipulate the memory state of a remote NVMe device as well as
any NVMe-oF client. In addition, we show how an adversary can
severely destabilize the performance and the usability of the NVMe-
oF protocol by exploiting vulnerabilities in the RDMA connection
and resource management. To show the feasibility of the discovered
attacks in practice, our attack framework, NeVerMore, was tested
on the two most popular implementations of NVMe-oF. Finally, we
discuss potential mitigation techniques for each of the discovered
vulnerabilities, including a proposal for application-level source
and data authentication for NVMe-oF requests (see Section 5.3).

1.1 Overview of implemented attack classes
Injection. An unprivileged user can inject packets into any RDMA
connection created on a local network controller, including con-
nections created by privileged kernel modules (see Section 4.1).
Therefore, any kernel application that makes use of RDMA opens
an attack surface allowing the attacker to manipulate the kernel-
level applications from user space by injecting RDMA requests
into their connections. For NVMe-oF, we show in Section 5.2 how
the adversary can bypass security mechanisms of operating and
file systems to directly manipulate NVMe disks at the block level
without administrative privileges.

Fake congestion. A privileged user can forge congestion no-
tification packets of RDMA protocols (see Section 4.2), forcing
remote network controllers to slow down. Therefore, the attacker

can disrupt the normal operations of any reachable RDMA-enabled
application. For NVMe-oF, the attacker can significantly degrade
the performance of accesses to remote NVMe disks.

Disconnection attack. An unprivileged user can forge pack-
ets of RDMA connection manager (see Section 4.3), allowing it to
disconnect any RDMA connection in the network, including con-
nections created by local and remote kernel modules. Therefore,
any user can disrupt the normal operations of any RDMA-enabled
application. For NVMe-oF, the attacker can temporally disconnect
network-attached NVMe disks, preventing the operating system
from accessing them.

Resource exhaustion. An unprivileged user can block local
RDMA resources (see Section 4.4), preventing local applications
from opening RDMA connections. Therefore, any local user can
disrupt the normal operations of any local RDMA-enabled applica-
tion. For NVMe-oF, the attacker can disconnect network-attached
NVMe disks using the previous attack and then prohibit them from
being reconnected, preventing the operating system from accessing
storage for an extended period.

2 BACKGROUND ON NVME OVER RDMA
RDMA. The NVMe-oF protocol uses RDMA network protocols
specified in the InfiniBand architecture [8] that includes native In-
finiBand, RoCEv1, and RoCEv2 protocols. Regardless of the underly-
ing RDMA protocol, developers make use of RDMA communication
through the RDMA verbs user space library [3]. Each reliable RDMA
connection consists of two endpoint handlers called queue pairs,
that allow applications to issue RDMA communication requests.
Users submit asynchronous communication requests directly to
the RDMA-capable network controller (RNIC) through its queue
pair handler, bypassing the operating system and reducing CPU
overhead. The RNIC performs all data accesses using an integrated
DMA module that can directly write into and read from local mem-
ory. Once the RNIC finishes the execution of a communication
request, it generates a completion event that is written to a user
space completion queue indicating completion of the request.

NVMe. The NVMe protocol [17] is a storage protocol designed
to take advantage of fast PCIe interfaces to send requests directly
to high-performance storage media. The NVMe protocol is similar
to an RDMA protocol with the communicating endpoints being the
host CPU and the storage device. Applications make use of NVMe
by directly posting asynchronous work requests to a storage device
that uses specialized DMA hardware to access memory. As a result,
NVMe provides microsecond-scale access latencies and millions
of I/O operations per second, significantly outperforming legacy
storage protocols such as SAS [29] and SATA [4].

NVMe-oF. The NVMe-oF protocol [18] defines a common ar-
chitecture that supports NVMe block storage over a network. As
a network protocol, NVME-oF leverages RDMA that offloads data
movement to RDMA-capable network cards and, therefore, reduces
the processing overheads involved in handling remote I/O requests.
The NVMe-oF protocol encapsulates the NVMe commands and
responses into a fabric-neutral capsule and passes it to the RDMA
transport. A capsule represents the NVMe unit transferred from
an NVMe-oF client to a remote NVMe-oF target that has a locally

NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage Applications CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Base Transport
Header Payload

InfiniBand
or RoCE

RDMA Header
(optional)

QPN
PSN

Target virtual address
Memory key (rkey)

Two integrity
checksums

NVMe capsule
and/or Data

RNIC
NVMe
client

Client

Routing
Header

Target

RNIC

Checksums

NVMe target

NVMe SSDNVMe-oF
(RDMA)

packet

Figure 2: NVMe-oF client-target model, and a packet format
of NVMe-oF packet.

attached NVMe device (i.e., over PCIe). NVMe-oF read and write
commands are discussed in detail in Section 5.

RDMA connection manager. The NVMe-oF client and the
remote NVMe-oF target need to establish an RDMA connection
to ensure reliable delivery of NVMe capsules. Connections are
established using the RDMA connection manager, a user space
library and a kernel module, designed tomake an RDMA connection
establishment and management similar to TCP sockets. Otherwise,
the RDMA application would have to implement an exchange of
connection parameters over TCP connections and manually create
RDMA endpoints using the RDMA verbs library, which is prone to
errors and complicates the maintenance of RDMA connections.

End-to-end overview. Figure 2 illustrates a deployment exam-
ple of NVMe-oF. A storage node (target) runs an NVMe-oF target
application that is privileged to access local NVMe devices via
the NVMe protocol and listens for RDMA connections from other
cluster nodes. A compute node (client) runs an NVMe-oF client
application that connects to the target using the RDMA connec-
tion manager. The client can either be a kernel module that locally
mounts a remote disk or a privileged application that is allowed
to connect to a remote disk. Currently, NVMe-oF targets can use
IP filters or an in-band authentication protocol [18, 25], offering
bi-directional challenge–response authentication, to prevent unau-
thorised connections.

The NVMe-oF protocol uses RDMA send for NVMe-oF requests
and responses to notify a target node through completion events
about incoming messages, and one-sided RDMA write and read
requests for data communication to “silently” access data with-
out generating completions events on the target. Here we give an
overview of how RNICs process packets. Later we discuss each
NVMe-oF request in detail in Section 5. When a client sends an
NVMe request, it gets encapsulated into an RDMA payload and
sent to the remote target. Each RDMA packet consists of a routing
header (containing network port identifiers), a transport header
(containing information relevant to the endpoint such as connection
identifier (QPN) and packet sequence number (PSN)), the packet
payload, and two integrity checksums.

The RNIC processes the RDMA packet in the following order.
First, it checks the checksums and whether the targeted connection
endpoint exists. For that, the RNIC checks whether a local table
of open connections contains the concatenation of the routing
information and the target connection identifier (QPN). Note that
the RNIC does not only match QPN but also the routing information
(e.g., the IP address of the sender for RoCEv2). If the connection
exists, the RNIC compares the packet sequence number (PSN) of

the packet and the local packet counter. If they match, the RNIC
copies the payload containing the capsule to the memory location
specified by the target application in a pre-posted RDMA receive
request. The application then processes the capsule and sends the
response to the client.

Data communication in the NVMe-oF protocol is conducted
through RDMA write and read requests, that additionally contain
an RDMA header containing a memory key (rkey) and a target
virtual address. To restrict unauthorized memory access, RDMA-
enabled applications need to explicitly register memory for RDMA
accesses to generate its memory key, which should be included in
the request by the initiator. To process one-sided RDMApackets, the
RNIC verifies the RDMA header by checking the permissions of the
targeted connection identifier (QPN) to access specified memory
given the provided memory key. After these checks, the RNIC
accesses the requested virtual address using its DMA engine.

Existing attacks on RDMA infrastructure. ReDMArk [28]
discusses vulnerabilities related to RDMA-enabled systems and
implements several attacks on RDMA-enabled applications. The
work conducted in ReDMArk showed that 1) a privileged attacker
can forge RDMApackets for RoCE networks, and 2) that the number
generators of RNICs areweak, allowing attackers to guess generated
connection identifiers (QPNs) and memory keys (rkeys).

We extend ReDMArk in the following dimensions. First, we relax
the assumed threat models for packet injection attacks and show
how to perform a packet injection without administrative privi-
leges on both RoCE and InfiniBand networks. Our injection tool is
superior to ReDMArk in both performance and applicability (see
Table 1). Second, we perform a security analysis of the RDMA con-
nection manager, which is used by all RDMA systems in production,
revealing vulnerabilities in its connection key generation process.
Third, we perform a security analysis of the NVMe-oF protocol in
the scope of RDMA. Finally, we show an attack on the congestion
mechanisms of RDMA, allowing it to slow down a remote RNIC.

3 THREAT MODEL
We consider two threat models which we denote as TLU and TRA.
In both models, we consider a victim connection that connects
two endpoints located on separate machines. The connection can
be any RDMA connection based on the InfiniBand architecture
such as RoCEv1, RoCEv2, and InfiniBand. In the case of NVMe-oF
storage disaggregation, the connection is established between an
NVMe-oF client and an NVMe-oF target. Furthermore, attacks that
target the RDMA connection manager, assume that the connec-
tion is established using the RDMA connection manager. For all
other attacks, the connection can either be established using the
RDMA connection manager or using the native interface through
the RDMA verbs library. Note that NVMe-oF always uses the RDMA
connection manager to establish connections.

Threat model Local User (TLU). We consider an adversary
that is on one of the endpoints of the victim connection (i.e., it is
co-located with either the NVMe-oF target or client). The attacker
is an unprivileged user and is assumed to have obtained access to
the machines using legitimate means. We assume that the attacker
shares the same physical RNIC as the NVMe-oF entity and both
can use it for communication. We assume that the attacker and

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Konstantin Taranov, Benjamin Rothenberger, Daniele De Sensi, Adrian Perrig, and Torsten Hoefler

the NVMe-oF entity are not separated through RNIC virtualization.
The TLU model is prevalent in private clusters that use RDMA and
NVMe-oF to accelerate their workloads.

The link between the NVMe-oF entities could be secured using
IPsec over RoCE [24], a protocol that encapsulates RoCEv2 pack-
ets into IPsec packets, and a corresponding IPsec policy that was
configured by a local administrator. Neither the NVMe-oF entities
nor the attacker has access to the cryptographic keys used for the
IPsec security policy but can use the secure link to communicate to
the remote entity. Consequently, all attacks implemented under the
assumption of the threat model TLU can be also performed when
the link between the machines is not secured using IPsec.

Threat model Remote Administrator (TRA). We assume
that the attacker is located on a different machine than the end-
points of the NVMe-oF connection. The attacker has administrative
privileges on its machine which allows it to fabricate and inject
messages into the network. These privileges allow the attacker
to change the configuration of the network interface (e.g., its IP
address). This model was proposed in ReDMArk [28] for packet
injection, where it was called the T2 model.

We assume that the IPsec over RoCE is not enabled for the
link between the NVMe-oF entities. This allows the attacker to
send forged packets to the endpoints of the victim connection.
Consequently, all the attacks that are implemented within this
model can be mitigated by enabling the IPsec channel over the path
used by our two victim endpoints.

Adversary constraints.We assume the NVMe-oF target only
accepts connections from benign NVMe-oF clients. Thus, the ad-
versary cannot directly establish a connection with the NVMe-oF
target. Existing NVMe target applications can use IP filters for that.
In addition, the security extension to NVMe-oF that is currently
under development is assumed to prevent all unauthorized connec-
tions using the challenge-handshake authentication protocol [15].

We assume that the adversary is further constrained by not being
able to eavesdrop on existing connections. For example, instead of
sniffing RDMA connection parameters from existing connections
(e.g., connection identifiers or packet sequence numbers), the at-
tacker is required to guess these parameters in order to successfully
impersonate one of the NVMe-oF endpoints. Guessing these param-
eters is facilitated using the attacks discovered in ReDMArk [28].

4 SECURITY ANALYSIS OF RDMA
PROTOCOLS IN NVME-OF

This section analyses the security of RDMA-capable devices and
protocols that are used by the NVMe-oF protocol. All attacks on
RDMA have been discovered during the security analysis of NVMe-
oF protocol and its implementations, and have been successfully
leveraged to compromise the security of the NVMe-oF protocol. For
example, an attack allowing to inject packets into an RDMA connec-
tion enables injection into an NVMe-oF connection. Nonetheless,
all the attacks can be successfully applied to other RDMA-enabled
systems and protocols. Therefore, this section does not solely fo-
cus on the NVMe-oF protocol but instead discusses the security of
connections by RDMA-enabled applications. The discovered vul-
nerabilities and attacks on RDMA have been analyzed for various
network controllers supporting RoCE and InfiniBand protocols.

Injection into User access Implemen-

RoCE IB IPsec in TLU in TLU tation

ReDMArk [28] ✓ ✗ ✗ ✗ sockets
NeVerMore ✓ ✓ ✓ ✓ RDMA verbs

Table 1: Comparison of injection tools. IB - InfiniBand.

4.1 Packet Injection
First, we analyze attacks that allow packet injection into InfiniBand-
based protocols including RoCE and native InfiniBand. Compared
to existing injection tools [28], our packet injection attack is feasible
without administrative privileges assuming that the adversary is
located on the same machine as the victim (see Table 1.).

In the case of conventional TCP sockets, the operating system
prevents packet injection into local connections by not exposing
“raw” sockets to unprivileged users and isolating sockets belong-
ing to different processes. As RNICs do not offer privileged “raw”
endpoints, it was considered impossible to forge native InfiniBand
packets. We show that any user can inject packets into any connec-
tion created on a local RNIC independent of whether it has been
created from user- or kernel-space, bypassing security mechanisms
of the operating system and its kernel. The implemented injection
tool can also successfully inject packets into IPsec over RoCE chan-
nels in the TLU model, thereby impersonating even secured RDMA
connections, which was not possible with the ReDMArk [28] tool.

4.1.1 Core Vulnerabilities. We below describe core vulnerabilities
found in the InfiniBand architecture and its implementations that
allow an attacker to successfully inject packets.

Lack of sanity checks during connection creation. Users
can create an RDMA endpoint without relying on the RDMA con-
nection manager, by directly using the RDMA verbs library (to
which we further denote to as native RDMA connection establish-
ment). This approach does not communicate any messages, be-
cause it expects that an application receives connection parameters
through other means of communication (e.g., using an out-of-band
TCP connection). To establish an RDMA connection, each host
manually creates an RDMA endpoint with information about the
destination host, such as its connection identifier, routing informa-
tion, and states for incoming and outgoing packet counters.

Unfortunately, none of the tested hardware providers of RNICs
performs basic sanity checks during the creation of an RDMA end-
point using native RDMA connection establishment. This allows
creating and using multiple RDMA endpoints that target the same
remote RDMA endpoint (i.e., with the same destination QPN) but
have different local identifiers. Therefore, two different processes
on a host can communicate to the same destination RDMA end-
point. This allows an attacker to create an almost identical copy
(except for the source QPN) of a victim’s existing connection and
use it for communication to the same RDMA endpoint. Given that
the creation of an RDMA endpoint using the native RDMA inter-
face does not involve any network communication, the detection
of such an impersonation attempt is limited.

Source QPN is not contained in RDMA packets. InfiniBand-
based protocols do not contain the source connection identifier
(QPN) in the packet, but only include the destination identifier in

NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage Applications CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Routing
Header

QPN=0x15
PSN=0x2 Payload Check

sums

Local QPN = 0x15
Local PSN = 0x2

Remote QPN = 0x33
Remote PSN = 0x9

RDMA headers are the same

Impersonated connection Victim’s connection

Local QPN = 0x33
Local PSN = 0x9

Remote QPN = 0x15
Remote PSN = 0x2

Attacker’s connection

Local QPN = any
Local PSN = any

Remote QPN = 0x15
Remote PSN = 0x2

Routing
Header

QPN=0x15
PSN=0x2 Payload Check

sums

Figure 3: An adversary creates an RDMA endpoint with the
same destination as the impersonated endpoint, making its
packets indistinguishable from the victim. PSN - packet se-
quence number. QPN - RDMA connection identifier.

the base transport header (see Figure 2). This design choice is based
on the fact that RDMA connections are point-to-point channels.
Thus, the source QPN is communicated to the receiver when the
RDMA connection is established and then stored in a connection
table on the receiving endpoint.

Even though this design choice does not seem like a vulnerability
on its own, it can be combined with the previous design flaw, allow-
ing an adversary to mimic an existing connection with a different
source QPN, to inject packets into the existing connection without
administrative privileges. The fact that the source QPN is not in-
cluded in RDMA packets makes the packets sent by an adversary
using its forged connection indistinguishable from regular RDMA
packets from the perspective of the remote RDMA endpoint (see
Figure 3). Therefore, the combination of these two design flaws
enables packet injection into any local RDMA endpoint without
any administrative privileges.

4.1.2 Implementation. We implemented the packet injection attack
using the native InfiniBand interface that uses the RDMA verbs
library to manually build a connection endpoint. For that, the at-
tacker is required to know information about the victim’s endpoint
such as the network port address, its connection identifier (QPN),
and its current packet sequence number (PSN).

The adversary can obtain this information as follows:
• The destination network port address is considered public infor-
mation (e.g., it is the IP address of the targeted RNIC for RoCEv2).

• The connection identifier is a 24-bit number generated by the
RNIC. However, the generators of connection identifiers in all
tested RNICs have shown to be flawed (see Table 2). The connec-
tion identifiers are assigned sequentially and the devices use a
static initialization value after a reboot, allowing the attacker to
guess a valid connection identifier.

• Given that the attacker is co-located with the targeted endpoint
and shares the same RNIC, it could create its own RDMA end-
point and gain information on previously established connections
based on the identifier assigned to its connection. Similarly, if the
attacker can legitimately connect to an application on the target
machine, it can query the remote connection identifier of the
connection with the application. Otherwise, the attacker could
attempt to start its attack after a scheduled reboot and injecting
packets with the identifier that is larger than the static starting
seed. We tested 31 different RNICs of five models listed in Table 2,
and the starting seed was in the range from 0x10 to 0x600.

RNIC model Static init. Sequential QPN

Mellanox X3 MT27500 ✓ ✓

Mellanox X5 MT27800 ✓ ✓

Mellanox X6-Dx MT28841 ✓ ✓

Broadcom BCM57414 ✓ ✓

Broadcom BCM58802 ✓ ✓

Table 2: Analysis of the generators of connection identifiers
(QPNs) on tested devices. The same RNIC models can have
different starting state, however, all tested devices had a
starting state that was smaller than 0x600.

• Since the starting packet sequence number is randomly generated
by the RDMA connection manager and an injection of packets
with wrong sequence numbers does not affect the victim’s con-
nection, we suggest to enumerate all its states (24 bits).
Injection under the TLU model. Using the discussed vulner-

abilities, the attacker can impersonate an endpoint sitting on the
host and perform the injection into its connections. To verify this,
we implemented a tool that does not require administrative per-
missions and can be run by any user. We have tested the tool on
InfiniBand and RoCE networks and successfully managed to inject
RDMA requests. Interestingly, we could inject at most 128 packets
from an attacker’s connection, as it never received acknowledg-
ments from the target endpoint and, therefore, could not make
further progress. Thus, our tool creates an RDMA connection for
each set of 128 requests. It is worth mentioning that connection
initialization is an expensive procedure that takes around seven
microseconds. Thus, the naive implementation of the attack tool
that uses only one connection is limited in throughput by the con-
nection initialization. For example, to send 224 packets the naive
implementation requires about 124 seconds.

As the packet sequence number is only 24 bits in size, a suc-
cessful injection of 224 packets completely enumerates all its states
and resets the counter to the same state as before the injection,
thereby making the attack unnoticeable for the impersonated end-
point. Thus, fast injection of 224 packets is a desired capability for a
successful attack. To have faster injection the attack tool can try to
create 217 endpoints for each starting packet counter and then start
injection from the created endpoints. However, this approach is not
always possible as RDMA drivers introduce the limit on created
endpoints, which is typically lower than 217. Thus, we propose to
create all available endpoints and reuse them to inject 224 packets.
We first send 128 requests from each created connection once, and
then we reset the state of some endpoints to continue the injec-
tion. This allows us to enumerate all packet sequence numbers
within 1.6 seconds on our Mellanox X6-Dx 25G RNIC, which is an
8x improvement over the ReDMArk injection tool [28].

Injection under the TRA model. Injection under the TRA
model is performed using the same tool as in the model TLU. How-
ever, as was mentioned in Section 2, the RNIC matches the destina-
tion RDMA connection identifier with the routing header, making
packets sent by an unprivileged user from a remote host dropped
because of a mismatch in the routing header. Thus, the adversary
also needs to change the address of the local network port. For

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Konstantin Taranov, Benjamin Rothenberger, Daniele De Sensi, Adrian Perrig, and Torsten Hoefler

$ sudo ibportstate -D 0 1 lid 0x4 active -d && ibv_devinfo

Figure 4: An example of the command to set 0x4 as Infini-
Band local identifier (LID) of the first RNIC, and to print it.

RoCE networks, the attacker can use ifconfig tool to assign the
IP address of the impersonated endpoint to a local RDMA device.
For InfiniBand networks, the attacker needs to change InfiniBand
local identifier (LID) of the network port, which is assigned by a
subnet manager. The subnet manager is a management application
of InfiniBand network that assigns addresses to all RDMA devices,
and it cannot be configured with the ifconfig tool. Even though it is
generally believed that the LID can be assigned only by the subnet
manager, we found out that the ibportstate tool from the infiniband-
diags package allows privileged users to change the configuration
of the RNIC (see Figure 4). This change is not permanent as the
subnet manager detects the changes and reassigns the correct LID.
However, the update intervals can take several seconds, which is
enough to create a device context and start the injection. On our
InfiniBand cluster, we were always able to change the LID of any
port with the ibportstate tool and inject packets with the required
routing header.

Injection into IPsec over RoCE The IPsec over RoCE proto-
col [24] is designed to bring secure channels to RoCE packets. IPsec
is an internet layer protocol that encapsulates RoCE packets and
protects them. It means that IPsec secures RDMA-enabled applica-
tions at the IP layer, which allows deploying all existing applications
with no code changes as the security policies are configured by
an administrator for each IP-IP path. The security keys are known
only to the administrator, thereby preventing users to sniff and read
packets of other users.

As the security policies are installed based on source and des-
tination IPs, RDMA connections created on the same path share
the same secure context (i.e., IPsec policy). In other words, if we
have two users sharing the same RNIC, they both share the same
IPsec policies and the operating system must provide isolation be-
tween connections created by two different users. However, we
have shown that the InfiniBand architecture has a security flaw
in the transport layer (see Section 4.1.1), which is opaque to IPsec,
working at the lower layer. As a result, applications can still bypass
isolation between connections through the security hole in the
transport header.

We have tested our spoofing tool under the model TLU with
enabled IPsec over RoCE. We configured a secure IPsec channel
in transport mode between two Mellanox X6-Dx cards [23]. As
IPsec rules are the same for two RDMA connections of different
users on the same IPsec-enabled RNIC, the IPsec packets are also
indistinguishable by the receiving RNIC. The problem is that Ro-
CEv2 packets encapsulated into IPsec packets do not use UDP ports
to recognize the sender and the receiver (the source UDP port is
any random number and the destination UDP port is a fixed num-
ber reserved for RoCEv2 protocol). RoCEv2 packets fully rely on
the base transport header of the InfiniBand architecture, which is
opaque to IPsec, to recognize the receiver and the sender using
only the destination RDMA connection identifier. This fact allows
an adversary to inject packets into RDMA connections that are
protected by IPsec using our tool.

We have also tested the injection tool from ReDMArk [28] and
it was not able to successfully inject a packet into an RDMA con-
nection protected with enabled IPsec, as their tool is based on raw
sockets requiring administrative permissions. IPsec policies could
detect and drop these packets.

4.1.3 Mitigation. To mitigate the injection under the TLU model,
the RDMA providers and the specification should address the two
vulnerabilities that we discovered. A simple solution is to make a
firmware update that disallows users to have two local connections
with the same destination. However, it may increase the connection
time, as the RNICwould need to scan destinations of all connections.
What is more, such a naive solution may even reveal to the adver-
sary all remote destinations, as the adversary could locally probe
possible remote identifiers. A more robust approach is to add a four-
byte header (RDMA packets must be 4-byte aligned) that would
include the source QPN (24 bits) to the packet format, allowing the
RNICs to distinguish packets from different connections. Alterna-
tively, a secure transport should be introduced to the InfiniBand
architecture, as proposed by sRDMA [33]. However, both solutions
would require changes to the architecture. Alternatively, one can
leverage programmable data planes to modify RDMA packets to
enable source authentication, as proposed by Xing et al. [39]. Their
authentication tool can mitigate our injection attack, but it requires
specialized programmable network controllers and switches, that
are not always available.

4.2 Slow Down using Congestion Control
In this section, we show how a privileged attacker can deceive
RDMA endpoints into thinking that they experience congestion,
forcing them to slow down.

4.2.1 Vulnerability. InfiniBand-based protocols (i.e., RoCE and In-
finiBand) support congestion control to prevent packet drops be-
cause of bursty traffic. Switches of an RDMA network mark packets
contributing to the congestion by setting a congestion bit in the
transport header. The congestion notification is carried through
to the target, which generates a congestion notification packet that
advises the initiator to reduce the injection rate to resolve conges-
tion. When receiving a congestion notification packet, the RNIC
reduces the rate of injection for the RDMA connection indicated in
the packet.

The main vulnerability is that congestion notification packets
are not protected, allowing an attacker to forge them. Forging a
congestion notification packet only requires knowing the connec-
tion identifier (QPN) of the victim. The packet sequence number
field must be zero, as it is designed to be an out-of-order packet that
could be potentially lost. As a result, anyone in the network can forge
a congestion notification packet to disrupt the normal operations of
any RDMA-enabled application.

4.2.2 Implementation. As the RDMA verbs library does not expose
congestion control to user space, we cannot use our NeVerMore tool
for injection. Instead, we extended the ReDMArk injection code to
inject congestion notification packets for the RoCEv2 protocol. To
measure the effectiveness of the attack we performed an attack on
the bandwidth benchmark of the perftest suite [2]. We created a
victim connection that was used for the uni-directional RDMAwrite

NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage Applications CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

0 10 20 30 40 50 60 70 80 90 100 110 120

Time in seconds

0

1000

2000

3000

B
an

d
w

id
th

(M
B

/s
ec

)

Not attacked connection
Attacked connection

Figure 5: Bandwidth of the victim connection during the in-
jection of congestion notification packets. The injection of
10M packets started at second 70 and took 20 seconds.

benchmark. Then we run our attack tool that injects congestion
notification packets targeting the endpoint that issues RDMAwrites.
Figure 5 shows the speed of the victim connection before, during,
and after the attack. To confirm that the slowdown happens due to
the attack on the congestion control, we measure the bandwidth
of the victim connection when we injected congestion notification
packets into another connection on that device. The measurement
shows that we significantly decreased the performance of the victim
connection from 2713 MB/sec to 0.04 MB/sec. Injection of packets
to another connection did not slow down the victim connection.

4.2.3 Mitigation. The simplest mitigation technique is to use IPsec
over RoCE that drops such spoofed packets. It also would be ben-
eficial to have a secure transport in the InfiniBand architecture.
Nonetheless, a proposal for a secure RDMA transport, sRDMA [33],
does not address the congestion control and does not state whether
it is supported. We assume that sRDMA does not support pure con-
gestion notification packets as they do not have a packet counter re-
quired for salting message authentication codes, preventing sRDMA
to uniquely authenticate each congestion notification packet. On
the other hand, the InfiniBand architecture allows piggybacking
congestion notification with RDMA responses that are secured by
sRDMA. Thus, for a future secure transport with congestion con-
trol, InfiniBand-based protocols would need to transfer congestion
notifications within ordered packets such as acknowledgments or
make specialized ordered secure congestion notification packets.

4.3 Attacking RDMA connection manager
In this section, we show how an unprivileged attacker can deceive
RDMA endpoints into thinking that their connections are discon-
nected. For that the attacker exploits vulnerabilities in RDMA con-
nection manager allowing the attacker to spoof disconnect requests,
forcing the user to receive a falsified disconnect event.

Applications use RDMA connection manager to send connect
and disconnect requests, that contain secret connection keys for
proving authenticity of requests. Even though these secret connec-
tion keys are managed by the corresponding kernel module and
are not known to applications, we found a vulnerability in their
generator, allowing an attacker to acquire secret keys for building
falsified disconnect requests.

4.3.1 Vulnerability. Lack of request filtering. The RDMA con-
nection manager kernel module works via unreliable RDMA con-
nections (they are similar to UDP sockets) with a special reserved

//on loading the RDMA connection manager kernel module
uint32_t seed = get_random_bytes(sizeof(uint32_t));
uint32_t local_key_state = 0;
//to assign hidden connection keys
uint32_t get_key(){

return seed ^ (local_key_state++);
}

Figure 6: A pseudo-code (in C language) showing how the
RDMA connectionmanager assigns keys to connections [7].

connection identifier (QPN is equal to 1). As it is unreliable, it is
able to receive packets from any endpoint and process them after
verifying the included secret connection keys. Even though unreli-
able connections, unlike reliable connections, include information
about the source (i.e., QPN of the sender), the kernel module does
not check it and processes all received messages regardless of the
sender. So any RDMA application, even unprivileged, can send a
message to the kernel module of the connection manager.

Weak key generator. To build a disconnect request the adver-
sary needs to provide only three values: the connection identifier
(QPN) that it wants to disconnect, the secret connection key of
the initiator, and the secret connection key of the target. The con-
nection key is a 32-bit value assigned by the connection manager
kernel module for each local connection, and user applications are
not privileged to know it.

We argue that the generator of connection keys is weak and has
low entropy. The full algorithm for the generator is listed in Figure 6.
The kernel module obtains a random 32-bit starting seed when it
is loaded and then XORs the seed with sequential identifiers. Due
to the nature of the algorithm, the difference between two keys
is dominantly in the least significant byte and in the half cases is
only in one bit of that byte. Therefore, if the adversary can guess a
recent key it can guess keys of other recent connections or at least
enumerate them without knowing the starting seed.

4.3.2 Implementation. We extended our injection tool to use un-
reliable connections to generate disconnect requests. In our first
experiment, we checked whether a client with user permissions
can send a disconnect request from user space and disconnect a re-
mote reliable connection. For that, we captured (using tcpdump [6])
the connections keys and the target connection identifier (QPN)
from the network to generate the correct disconnect request. We
could do it as the RDMA connection manager communicates all
connection parameters in plain text. Our experiments showed that
any unprivileged endpoint within the network can falsify a discon-
nect request and disconnect any reliable connection, even sitting on
a machine different from the connection endpoints (i.e., location of
the TRA model, but capabilities of the TLU model). Thus, this attack
can be performed even with IPsec over RoCE enabled and from
any location on the network without administrative privileges. In-
terestingly, for the tested devices the reception of the disconnect
request does not break or destroy an RDMA connection and only
works as a notification to the user. However, all applications, in-
cluding NVMe-oF implementations, are implemented to trust these
notifications and destroy connections.

Tool for finding local secret connection keys. To perform
this attack without sniffing capabilities we propose a technique for
finding secret connection keys of local RDMA connections. Our

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Konstantin Taranov, Benjamin Rothenberger, Daniele De Sensi, Adrian Perrig, and Torsten Hoefler

tool allows the attacker to find secret keys of victim connections on
machines into which the adversary can login.

The tool creates two RDMA connections in one process and
connect them using the RDMA connection manager. As a result,
the connections will get two secret RDMA connection keys that
are likely to have a difference in 1 bit because of the used generator
(see Figure 6). Using this information, the adversary can locally
probe disconnection requests to detect the state of the connection
key generator. As the connection identifier (QPN) is known, the
adversary only needs to enumerate 32 bits (the first key) plus 3
bits (the flipped bit in the first byte of the second key) to find both
hidden keys. This process can fail if the difference was in more than
1 bit, but the attacker can retry it again. Our tool manages to find
the keys within one hour as it generates 10M requests per second
on our Mellanox 6X-Dx 25G RNIC.

The probability of the difference to be in only one bit of the first
byte is 0.5, making our tool to fail 50% of the time. Alternatively,
one could improve the success of the tool by enumerating the whole
first byte, as the probability of the difference to be in the first byte
is 0.99609375. However, this approach requires enumerating 8 bits
in the second connection key. If one enumeration of the the first
connection key takes time 𝑇 , then according to the mean value of
geometric distribution, this naive approach requires (28)×1/0.996×
𝑇 ≈ 257×𝑇 , whereas our original approach only (23) × 1/0.5×𝑇 ≈
16 ×𝑇 . Therefore, our tool finds the keys 16× faster.

After that, the adversary can guess the initial random seed of
the local RDMA connection manager. If the machine was recently
booted, the attacker can have a close guess on the number of gen-
erated keys. For example, by exploiting the fact that RDMA con-
nection identifiers (QPNs) are generated sequentially from a static
starting state. Thus, the attacker can guess the number of created
RDMA connection manager contexts by calculating the difference
between the starting and the current states of the QPN generator.
By having the guess, the adversary can simply find the seed by
XORing the resulting value with a recently found identifier.

4.3.3 Mitigation. To improve the security of the RDMA connection
manager, we propose to process requests only from the reserved
connection for the connection manager. It will prevent the injec-
tion from unprivileged users, as the reserved connection can be
created only from the kernel. Interestingly, we performed a similar
experiment with the IP-over-IB protocol [19], which uses another
reserved connection (the QPN is equal to 0x208) for encapsulating
IP packets into unreliable RDMA packets, but it checks the source
QPN, thereby removing a huge attack surface.

Nonetheless, for RoCE networks, an adversary with administra-
tive permissions can forge a packet with any source connection
identifier (QPN), making the attack still possible under the TRA
model. Thus, we propose applications to verify disconnect requests.
Developers can make use of payloads that can be sent with a dis-
connect request to distinguish trusted disconnect requests from
untrusted at the application level. As a connection can be broken
due to application failure, we propose to verify all untrusted discon-
nect requests by sending a challenge message to a remote endpoint
using challenge handshake authentication protocol [15]. If the re-
mote endpoint does not reply after a series of retries, the connection
can be closed.

4.4 RDMA Connection Exhaustion Attack
In this section, we show how a user with no administrative priv-
ileges can prevent other applications from opening RDMA con-
nections. The attack can be performed by any user and affects all
RDMA-enabled applications.

4.4.1 Vulnerability. RDMA drivers introduce limits on the number
of open RDMA connections to operating systems. Unlike Linux,
which limits the number of open TCP connections by each user,
RDMA limits are system-wide. As a result, all RDMA-enabled ap-
plications, including privileged applications running in the kernel,
share the same limit on the number of open connections. This vul-
nerability allows any local user to exhaust this limit and prevent
other applications to have new connections. This applies also to
other RDMA resources such as completion queues and memory
regions, but here we focus on connections only.

4.4.2 Implementation. We implemented a tool that locally creates
RDMA connections with the RDMA verbs library until it reaches
the limit. After running the tool we attempted to create an RDMA
connection from user and kernel spaces. Our experiment showed
that our tool successfully blocks new connections for user space
applications as well as kernel space applications.

4.4.3 Mitigation. To allow administrators to manage RDMA re-
sources, the integration of RDMA and its limits into current operat-
ing systems should be improved. After contacting some RDMA
providers, they described an approach allowing administrators
to introduce user limits to RDMA resources called “RDMA con-
trollers” [21], which is a component of Linux control groups. RDMA
controllers are not widely used and not many administrators know
about their existence. We want to mention this technique here to
inform other administrators, as it is not mentioned in the RDMA
aware programming manual [34] and we find this useful tool insuf-
ficiently promoted.

4.4.4 Comparison to other Exhaustion Attacks. ReDMArk [28] pro-
poses remotely exhausting RDMA connections available to appli-
cations, prohibiting them from opening new connections. Even
though they target the same vulnerability, they are different and
require different mitigation techniques. ReDMArk’s attack is per-
formed from a remote location by a user which is able to establish
many RDMA connections with an RDMA-enabled system to pre-
vent the system from opening connections with other clients. Our
attack does not require an ability to connect to the RDMA-enabled
system, which makes it applicable to NVMe-oF applications under
the TLU model. Regarding mitigation, our attack can be mitigated
by the RDMA controllers, whereas RDMA controllers make ReD-
MArk’s attack even more viable. ReDMArk’s attack is mitigated
using authentication of clients or by limiting the number of open
connections from the application, thereby making the attack im-
practical for NVMe-oF targets, which already prevent unauthorized
connections and monitor open connections.

5 SECURITY ANALYSIS OF THE NVME-OF
PROTOCOL

In this section, we analyze the security of the NVMe-oF protocol
and its implementations. First, we give a background on NVMe-oF

NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage Applications CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

requests and the security mechanisms of NVMe-oF. Then, we show
how the attacks from Section 4 can be effectively applied to NVMe-
oF applications. Finally, we propose mitigation techniques that will
improve the security of disaggregated storage protocols.

5.1 NVMe-oF and its Implementations
TheNVMe-oF protocol allows the execution of NVMe commands on
a remote solid-state storage device or system over RDMA-capable
networks. For this purpose, it transfers the NVMe commands and
responses between the current and the target host by encapsulating
them into the payload of RDMA messages. The NVMe protocol
differentiates between control-plane and data-plane capsules. The
former are transferred using RDMA send, whereas the latter are
transferred using one-sided memory accesses such as RDMA read
and write operations.

5.1.1 Request Types. NVMe-oFWrite in-capsule.Write requests
with a small payload size (usually less than 4096 bytes) can be sent
as a single message via a single RDMA send request. Besides the
command data, the request capsule contains basic information such
as a destination block address, the command identifier, command
parameters, etc. Upon receiving the capsule, the NVMe-oF target
checks the correctness of the request and writes data to the local
NVMe device as illustrated in Figure 7. Finally, the target sends a
response to the client, indicating the completion of the request.

NVMe-oF Write. If a client wants to send a large payload, the
request will contain the information allowing the NVMe-oF target
to fetch that data from the client using an RDMA read operation.
After receiving the request, the target reads the data from the client.
After the data is read and written to local NVMe, the target sends a
response indicating the completion of the NVMe-oF request.

NVMe-oF Read. To read data from a remote NVMe device, the
client sends an NVMe-oF read request that contains the information
where the target should write the data. The target will read the data
from the disk and then write it to the buffer of the client using an
RDMA write request. As the RDMA write is a “silent” one-sided
operation, the target sends a response via an RDMA send to indicate
the completion of the request.

5.1.2 In-band Authentication. The NVMe technical working group
released a specification [17, 18] defining an in-band authentication
protocol for NVMe protocols called the DH-HMAC-CHAP, which
provides bidirectional authentication between a client and a target
using the challenge handshake authentication protocol (CHAP).
The DH-HMAC-CHAP protocol is an enhanced CHAP protocol
with hash-based message authentication code and augmented with
an optional Diffie-Hellman (DH) exchange. The DH-HMAC-CHAP
is used to authenticate connections (i.e., between clients and tar-
gets), but cannot be used to authenticate individual NVMe-oF re-
quests. The current specification suggests to authenticate the end-
points usingDH-HMAC-CHAP and then use TLS or IPsec to provide
authentication and encryption for the communication channels.

The core problem of the proposed security extension is that it
does take into account that RDMA connections do not offer a secure
transport like TLS [26]. The in-band authentication can only be
used by TCP connections and targets a TCP extension to the NVMe-
oF protocol, called NVMe-oF/TCP. Thus, the NVMe-oF protocol

Client Target

RDMA send

RDMA read

RDMA send

Client Target

RDMA send

RDMA send

Client Target

NVMe-oF writeNVMe-oF write in-capsule NVMe-oF read

NVMe
write

build
request

check
response

build
request

check
response

NVMe
write

RDMA send

RDMA send

build
request

check
response

NVMe
readRDMA write

Figure 7: NVMe-oF requests and their implementation over
RDMA connections.

fully relies on IPsec over RoCE to provide secure communication
to RDMA connections.

5.1.3 IPsec over RoCE. Since the previously discussed in-band au-
thentication protocol neither offers message authentication nor
encryption for NVMe-oF, the NVMe technical working group cur-
rently proposes to employ IPsec over RoCE [24]. IPsec over RoCE
provides data secrecy for the NVMe-oF protocol deployed over the
RoCEv2 protocol. However, IPsec is not implemented for Infini-
Band networks as it is not an IP-based protocol, making InfiniBand
interconnects vulnerable to attacks under the threat model TRA. In
addition, as discussed in Section 4.1.2, IPsec does not provide isola-
tion between RDMA connections of different users: applications
that use the same IPsec-enabled network interface share its security
policies, making them vulnerable to attacks under the threat model
TLU (see Section 4.1). Therefore, IPsec is not sufficient to offer a
secure transport for the NVMe-oF protocol.

5.1.4 NVMe-oF Implementations. SPDK.The Storage Performance
Development Kit (SPDK) [5] provides a set of tools and libraries
for writing high-performance, scalable, user-mode storage appli-
cations. SPDK is a user space library for accessing NVMe-enabled
devices and is already used by many database and storage sys-
tems [9, 12, 16, 22, 32, 40]. In other words, device driver code runs
at the user level, avoiding kernel context switches and interrupts.
SPDK library offers an NVMe-oF client library and an NVMe-oF
target application for RDMA connections. In addition, SPDK ex-
ploits hugepages [13] to reduce memory translation overheads that
are present in RNICs [14].

Linux kernel. The Linux NVMe driver [20] is included as part
of the Linux kernel. NVMe-oF clients and targets are implemented
as kernel modules that run with administrative permissions. Un-
privileged Linux users cannot directly interact with NVMe devices
as NVMe provides block-level access to the disks. Therefore, users
interact with NVMe devices through high-level interfaces (e.g., a
filesystem) that translate block requests to NVMe-oF requests. In
summary, the Linux NVMe driver is implemented exclusively for
kernel space modules and applications.

SPDK and Linux NVMe driver comparison. The main dif-
ference between SPDK and the Linux NVMe driver is in the man-
agement of RDMA-accessible memory. In general, all memory that
can be accessed by an RNIC must be registered, and any remote
user that wants to access memory should include a corresponding
access token (memory key) in its one-sided RDMA request. Memory

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Konstantin Taranov, Benjamin Rothenberger, Daniele De Sensi, Adrian Perrig, and Torsten Hoefler

Threat Model TLU Threat Model TRA

Attack None In-band IPsec None In-band IPsec Effect

Spoof NVMe-oF request Yes Yes Yes Yes Yes No Execution of falsified request
Spoof NVMe-oF response Yes Yes Yes Yes Yes No Early termination
Corrupt memory Yes1 Yes1 Yes1 Yes1 Yes1 No Use of falsified data

Exhaust RDMA connections Yes2 Yes2 Yes2 No No No Connection failure
Spoof congestion notification packets No3 No3 No3 Yes Yes No Connection slowdown
Spoof RDMA disconnect Yes Yes Yes Yes Yes Yes Disconnection
Spoof invalid packet [28] Yes Yes Yes Yes Yes No Disconnection

Feasibility of the attacks on NVMe-oF
1 Linux kernel uses fast memory registrations with invalidation, which increases the complexity of the attack.
2 Can be mitigated with RDMA Controller [21].
3 Injection of congestion notification packets is possible only for RoCE with administrative permissions.

Table 3: Analysis of attacks on the NVMe-oF protocol depending on enabled security mechanisms (None, In-band, or IPsec).

registration is different for kernel and user space. The kernel can
efficiently dynamically register memory with fast memory regis-
tration [27, p. 381], which allows the kernel to efficiently register
any memory region provided by upper layers. Since the kernel
is privileged to exploit the fast memory registration, the NVMe-
oF driver also dynamically deregisters the memory after it was
used by a remote client (using “memory invalidation” capabilities
of RNICs). Such an approach improves the security of NVMe-oF
kernel modules as the memory is only RDMA accessible during
a short time interval. On the other hand, SPDK cannot efficiently
register/deregister memory and therefore registers the memory
once and reuses a single registration (i.e., a single memory key) for
all RDMA-accessible memory.

5.2 Attacks on NVMe-oF
In this section, we describe how the attacks described in Section 4
can be used to circumvent security mechanisms of NVMe-oF. Over-
all, we propose seven different attacks on the NVMe-oF protocol
that are summarized in Table 3.

5.2.1 Spoofing of NVMe-oF Requests. RDMA packet injection al-
lows an attacker to inject an RDMA send request that contains an
NVMe capsule. This is possible because NVMe messages are not
authenticated and the attacker can guess the connection identifier
of the NVMe-oF target as it is usually launched during the boot pro-
cess. Furthermore, the packet sequence number can be enumerated
within 2 seconds using our injection tool.

We have tested this attack on NVMe-oF Write in-capsule re-
quests and could trick both the Linux driver implementation and
SPDK implementation to write forged blocks to the NVM device.
Consequently, our NVMe-oF capsule injection allows re-writing any
NVMe block stored on a remote disk without administrative privileges,
bypassing security mechanisms of operating and file systems.

Interestingly, the SPDK and Linux kernel implementations be-
have differently in case of a packet injection attack. Injection of a
single packet does not break the connection for an SPDK client, but
always causes a disconnect for a Linux kernel client. This happens
due to a de-duplication flow integrated into the RNICs and the way
SPDK clients handle responses. Aswas discovered in ReDMArk [28],
injection of one packet does not break an established connection

Client

Target

build
request

Attacker
NVMe-oF write in-capsule PSN=5

Response

Ignored
by RNIC

check
response

NVMe-oF Request
PSN=5NVMe

write

Figure 8: Attacking NVMe-oF write in-capsule requests.

as the packet arriving from an impersonated connection is con-
sidered to be a duplicate and thus is dropped (due to duplicated
packet sequence number (PSN)). This phenomenon is illustrated
in Figure 8, where an attacker injects a request that gets executed
and responded by the target. When the client sends its request after
that, it is dropped by the RNIC due to duplicated PSN. The SPDK
client keeps the response for the forged request and treats it as a
response for its next request. The Linux driver implementation, on
the other hand, simply ignores the premature response and as a
result, does not get any response for its next request.

5.2.2 Spoofing of NVMe-oF Responses. An adversary can spoof
the response issued by the target to the client. The reception of a
response for a client means that the affected communication buffer
has been used and it can be now deregistered or reused for a new
request. Thus, the injection of NVMe-oF responses to NVMe-oF
clients can cause premature memory invalidation for the Linux
kernel implementation and premature memory mutation for SPDK.

We tested this attack for affecting NVMe-of write requests. In
the case of the TLUmodel, the attack tool was executed on the same
machine as the NVMe-oF target. The attack is illustrated in Figure 9,
where the adversary sends a response right after the RDMA read
request arrived from the target. As the client received the response
earlier, it may mutate the data before it is fully read by the target,
resulting in storing corrupted data into the disk. Consequently, our
NVMe-oF response injection allows corrupting data on a remote disk
without administrative privileges.

5.2.3 Memory Corruption using RDMA Write. An attacker can in-
ject RDMA write requests to change the RDMA-accessible memory

NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage Applications CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Target

Client

Attacker

NVMe-oF
Write

Response

ignored
by RNIC

RDMA
read

NVMe
write

reuse
buffer

Response

Figure 9: Attacking NVMe-oF write requests.

Target

Client

Attacker

NVMe-oF
Read

RDMA write PSN=5

ignored
by RNIC

NVMe
read

RDMA write
PSN=5

Response
PSN=6

check
response

Figure 10: Attacking NVMe-oF read requests.

of the NVMe client as well as the NVMe target. In theory, an NVMe-
oF target should be resilient against this attack as it may register
memory only for local accesses, since clients never issue RDMA
reads and writes (see Figure 7). Nonetheless, the SPDK target reg-
isters memory for remote accesses, making it vulnerable to this
attack. The Linux NVMe-oF target module does not have this issue.

Injecting an RDMA write requires the attacker to know a valid
memory key (rkey) and the corresponding memory address of the
victim endpoint. SPDK clients and targets pre-allocate memory
and thus use a single memory key for their communication buffers.
Additionally, ReDMArk has shown that memory key generators
of existing RNICs are weak and often have problems with static
initialization [28]. Thus, some RNICs assign the same memory key
to the first memory registration after a reboot. This results in an
SPDK application having static predictable keys as they are often
loaded at the boot. The address of memory pools is also known for
SPDK as it uses hugepages and by default maps them to a predefined
virtual address (0x200000000000). Therefore, an attacker can exploit
these vulnerabilities to modify the memory of SPDK applications
using RDMA write requests.

We tested this attack to alter the data of NVMe-oF read (see
Figure 10). The attacker issues an RDMA write to the receive buffer
of the client application. The client issues an NVMe-oF read to the
target, which fails to write the read bytes to thememory of the client
as its RDMA write is dropped because of duplicate packet sequence
number (PSN). Then the target sends the response, indicating the
completion of the operation. As a result, the client observes data
completely falsified by the attacker. Consequently, this attack allows
an unprivileged user to manipulate receive buffers of NVMe-oF clients
without affecting the data stored in the remote disk.

The Linux kernel implementation usesmemory registrations that
are valid only during a short time interval and uses dynamic buffer
addresses that are defined by applications that implicitly use the
NVMe-oF kernel module. Therefore, it is mostly resilient to mem-
ory corruption attacks and can only be exploited in very specific
settings. To conduct this attack on the Linux kernel implementa-
tion, we assume an I/O queue of depth 1 and that the adversary

was able to eavesdrop on the last used packet sequence number and
the memory key of the last memory request. As the Linux kernel
implementation uses fast memory registration (similar to memory
windows type 2 in InfiniBand architecture [8]), the next memory
key is equal to the last key plus one. In a zero-knowledge environ-
ment with many applications that use many deep I/O queues, the
attack becomes more complex but is still considered possible.

5.2.4 NVMe-oF Connection Slow-Down. Since NVMe-oF is based
on RDMA it is subject to the slowdown attack introduced in Sec-
tion 4.2. Our tool allows the attacker to inject congestion notification
packets towards the target or the client to slow them down. The at-
tacker can guess RDMA connection identifiers of the NVMe-oF
applications using the vulnerabilities in number generators dis-
cussed in Section 4.1.2. We tested this attack on both NVMe-oF
implementations and observed a slowdown as in Figure 5.

5.2.5 Spoofing of RDMA Disconnect request. NVMe-oF uses the
RDMA connection manager to establish connections. Therefore,
the attacker can perform the attack described in Section 4.3 to
disconnect clients. SPDK and Linux kernel clients automatically
reconnect to the target, but the disconnection can cause long periods
of unavailability. Similar to the previous attacks, the attacker can
use the fact that often NVMe-oF targets and clients are loaded
after the boot process, allowing the attacker to guess the hidden
connection keys to spoof a valid RDMA disconnect request.

5.2.6 Connection Establishment Prevention. Using the RDMA con-
nection exhaustion attack discussed in Section 4.4, an attacker can
prevent clients and targets from connecting and can be conducted
either at the client or at the target machine. The attack can be
performed in combination with forced disconnection attacks. The
attacker can disconnect existing connections using the disconnect
attacks and follow-up with the exhaustion attack to prevent the
target from reconnecting to the client.

5.2.7 Forced Disconnection with Invalid Packets. Finally, we apply
the attacks proposed in ReDMArk [28] to the NVMe-oF protocol.
Most of the proposed attacks can not be applied to NVMe-oF (we
discuss the feasibility of the attacks in Section 6). However, the
ReDMArk’s attack that causes disconnections of connections by
injecting invalid RDMA packets is feasible in NVMe-oF. The at-
tacker can inject an invalid RDMA packet that will cause an error
on the NVMe-of applications. For example, the attacker can inject
an RDMA write with a payload that contains an invalid memory
address (e.g., 0x0) and force an existing connection to disconnect.
Note that with our injection tool, the injection of invalid packets can
be done without administrative permissions, whereas ReDMArk’s
tool requires them.

Both SPDK and the Linux kernel are vulnerable to this attack.
Similar to previous injection attacks, the attacker needs to know the
connection identifier of the victim endpoint and its current packet
sequence number to break the connection. Both of these values can
either be guessed or enumerated with low effort.

5.3 Mitigations for NVMe-oF Vulnerabilities
The NVMe working group suggests to utilize IPsec and endpoint
authentication using the DH-HMAC-CHAP protocol to mitigate

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Konstantin Taranov, Benjamin Rothenberger, Daniele De Sensi, Adrian Perrig, and Torsten Hoefler

the current security shortcomings of the InfiniBand architecture.
However, even with the deployment of these mechanisms, not all of
the suggested attacks are mitigated (see Table 3 for a summary). The
problem is that the proposed techniques do not provide an RDMA
secure transport and consequently are subject to packet injection
attacks in case of a local unprivileged attacker (TLU). Therefore,
we suggest the following additional mitigation mechanisms.

NVMe-oF Message Authentication. The NVMe-oF protocol
could employ application-layer security to authenticate NVMe-
oF messages including one-sided RDMA requests, even though
source authentication for RDMA cannot be fully implemented at
the application layer [33]. The reason is that one-sided RDMA
requests are executed by RNICs without CPU involvement, making
it impossible to verify the authenticity of these packets before
executing them. For example, it is impossible to secure an RDMA
read at the application layer as a remote client can access memory
without CPU involvement using the DMA engine of the RNIC.

Nonetheless, source authentication at the application layer can
be used for NVMe-oF, since NVMe-oF requests always involve two-
sided RDMA sends. We propose that the sender (i.e, an NVMe-oF
client or an NVMe-oF target) includes a message authentication
code (MAC) to each NVMe-oF message, thereby allowing the re-
ceiver to authenticate the sender and the data sent with a request
(e.g., for write in-capsule). In this way, we can secure NVMe-oF
requests and responses at the application layer. To additionally
ensure data integrity of data sent over one-sided RDMA operations,
we propose to authenticate this data with an additional MAC sent
in a corresponding NVMe-oF message. For NVMe-oF writes, the
MAC calculated over the data of the RDMA write should be part of
the NVMe request. For NVMe-oF reads, the MAC calculated over
the data of the RDMA read should be in the NVMe response.

To have such protection across different RDMA requests, the
NVMe-oF application needs to invalidate memory registrations
after completion of a one-sided RDMA request, preventing memory
mutation caused by RDMA write injections from remote adver-
saries. After the memory is invalidated, the recipient of the data
should verify the integrity of the data using a MAC from an NVMe-
oF request or response. Otherwise, the attacker could modify the
data after it was checked but before it was submitted to the lo-
cal NVMe device. Note that the current implementation of SPDK
chooses performance over security and does not invalidate mem-
ory registrations at all. Overall, the NVMe-oF specification should
introduce two MACs per an NVMe-oF message to authenticate
data and NVMe-oF messages independently. If they use one MAC
calculated over a concatenation of the message and the data, it may
cause a partial execution of a falsified NVMe-oF write request as
the NVMe-oF target needs to issue an RDMA read to fetch the data.

5.3.1 Guidelines for NVMe-oFDevelopers. The SPDK library should
register the target’s memory only for local accesses and utilize
invalidation of memory to significantly reduce the probability of
unauthorized memory accesses. NVMe-oF developers could provide
message authentication for RDMA connections using the aforemen-
tioned suggestions. In this case, the in-band security should be
extended to work with the RDMA connections. In addition, the
in-band security should support challenging disconnect requests,
allowing to verify the authenticity of RDMA disconnect requests.

Developers could also randomize the RDMA identifiers with tech-
niques proposed in other works [28]. Finally, developers should
inform users of the NVMe-oF protocol about RDMA controllers
and explain how to make use of them.

5.3.2 Guidelines for RDMA Vendors. To prevent injection from
local unprivileged users (as in TLU), the RDMA providers should
introduce changes to the specification that add the source QPN
to the packet format. Furthermore, due to the shortcomings in
IPsec over RoCE, RDMA should invest in a secure transport for
InfiniBand-based protocols (e.g., sRDMA [33]).

The RDMA connection manager should process only messages
arriving from other remote RDMA connection managers. Finally,
the RDMA connection manager kernel module should be extended
with a secure connection protocol that provides both secure RDMA
channels and authentication of NVMe-oF (as discussed above). Cur-
rently, the RDMA connection manager sends all data in plain text,
thereby, forcing users of a future secure RDMA transport to imple-
ment their own secure connection establishment protocol.

6 RELATEDWORK
Simpson et al. [30] explore the security challenges introduced by
RDMA networking to distributed storage systems. They analyze
security gaps in RDMA techniques and their security implications
for storage systems. However, their paper does not implement or
test any of the suggested security gaps.

ReDMArk [28] discusses vulnerabilities related to RDMA-enabled
systems and implements several attacks on RDMA-enabled appli-
cations. Most of the attacks proposed in ReDMArk are not directly
applicable to NVMe-oF, because NVMe-oF target applications can
reject RDMA connections using IP filters or the in-band security
extension (see Section 5.1.2). As a consequence, the connection
exhaustion and connection slowdown attacks using traffic injection
are not feasible. In comparison, six out of seven NVMe-oF attacks
proposed in NeVerMore differ from the attacks in ReDMArk. Only
ReDMArk’s connection disconnection attack, which breaks con-
nection by injecting invalid RDMA packets, is applicable to the
NVMe-oF protocol.

Xing et al. [39] develop a suite of defenses, called Bedrock,
against attacks proposed in ReDMArk [28]. Bedrock leverages pro-
grammable data planes (using eBPF [1] and P4 [10]) in modern
network devices to build defense primitives for authentication, ac-
cess control, and monitoring and logging in RDMA networks. Their
authentication tool can be employed to mitigate our injection at-
tack, but it requires specialized programmable network controllers
and switches, that are not always available. Bedrock cannot miti-
gate against our attack on the congestion control mechanisms as
injected packets are not distinguishable from real congestion pack-
ets. Bedrock monitors traffic in switches, and thus cannot mitigate
our local exhaustion attack and local connection key probing, as
they do not generate network traffic. Nonetheless, Bedrock could
be extended to detect local attacks by extending its eBPF framework
to log local RDMA library calls.

An alternative technology for storage disaggregation is virtu-
alization of remote NVMe storage via software-defined network
accelerated processing [35]. NVIDIA BlueField SmartNICs [36] en-
able hardware-accelerated virtualization of NVMe storage, where

NeVerMore: Exploiting RDMA Mistakes in NVMe-oF Storage Applications CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

remote networked storage is emulated as a local NVMe SSD con-
nected to the PCIe bus. As a result, the host operating systemmakes
use of its standard NVMe-driver unaware that the NVMe access
occurs over the network. Their design avoids sharing RDMA dri-
vers between the operating system and the SmartNIC, preventing
the attacks under the TLU model and the ability to guess RDMA
resources such as connection identifiers and keys.

7 CONCLUSION
We show how adversaries can bypass security mechanisms of
NVMe-oF using vulnerabilities in RDMA protocols. To perform
attacks on NVMe-oF implementations we have designed several
attack tools that can be used to attack other RDMA-enabled appli-
cations. Notably, we show how to spoof RDMA packets into victim
connections without administrative permissions, even when IPsec
over RoCE is enabled. Regarding the NVMe-oF protocol, we show
how an attacker without administrative permissions can write data
to a remote NVMe device, bypassing existing security mechanisms
of the NVMe-oF protocol and operating systems. In addition, we
show how we can falsify an NVMe data response, thereby forcing a
victim client to observe the forged state of an NVMe device without
actually modifying the state of the NVMe device. We anticipate
that our work motivates security research on high-performance
interconnects and systems utilizing them, leading to more secure
high-performance networks and systems.

8 RESPONSIBLE DISCLOSURE
We have notified and responsibly disclosed the weaknesses related
to RDMA and NVMe-oF to Mellanox, Broadcom, Intel, and the
NVMe working group prior to the submission of this work.

9 AVAILABILITY OF NEVERMORE
The source code of NeVerMore’s attack tools can be accessed under
the link: https://github.com/spcl/nevermore.

10 ACKNOWLEDGEMENTS
We gratefully acknowledge support from ETH Zurich and from the
Zurich Information Security and Privacy Center (ZISC). This work
has received funding from the European High-Performance Com-
puting Joint Undertaking (JU) under grant agreement RED-SEA,
No 955776. Daniele De Sensi is supported by an ETH Postdoctoral
Fellowship (19-2 FEL-50). We also thank the Microsoft Swiss Joint
Research Centre and Intel Labs for their support.

REFERENCES
[1] 2021. eBPF official website. https://ebpf .io/. [Accessed 20-Aug-2022].
[2] 2021. Open Fabrics Enterprise Distribution (OFED) Performance Tests. https:

//github.com/linux-rdma/perftest. [Accessed 20-Aug-2022].
[3] 2021. RDMA core userspace libraries and daemons. https://github.com/linux-

rdma/rdma-core/. [Accessed 20-Aug-2022].
[4] 2021. Serial ATA International Organization (SATA-IO). https://sata-io.org/.

[Accessed 20-Aug-2022].
[5] 2021. Storage Performance Development Kit v21.07. https://spdk.io/. [Accessed

20-Aug-2022].
[6] 2021. tcpdump and libpcap. https://www.tcpdump.org/. [Accessed 20-Aug-2022].
[7] 2022. The number generator of the RDMA-CM kernel module.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/
infiniband/core/cm.c?h=v5.18.5#n842. [Accessed 20-Aug-2022].

[8] InfiniBand Trade Association et al. 2020. The InfiniBand Architecture Specification
1.4. https://www.infinibandta.org/ibta-specification/.

[9] Tim Bisson, Ke Chen, Changho Choi, Vijay Balakrishnan, and Yang-suk Kee. 2018.
Crail-KV: A High-Performance Distributed Key-Value Store Leveraging Native
KV-SSDs over NVMe-oF. In Proceedings of the 37th IEEE International Performance
Computing and Communications Conference (IPCC’18). IEEE Computer Society,
1–8. https://doi.org/10.1109/PCCC.2018.8710776

[10] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMMComput. Commun. Rev. 44, 3 (jul 2014), 87–95. https://doi.org/10.1145/
2656877.2656890

[11] Broadcom. 2018. Stingray PS225 2x25Gb High-Performance Data Center Smart
NIC. https://docs.broadcom.com/doc/PS225-PB. [Accessed 20-Aug-2022].

[12] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui
Wang, and Guoqing Ma. 2018. PolarFS: An Ultra-Low Latency and Failure
Resilient Distributed File System for Shared Storage Cloud Database. Proceedings
of the VLDB Endowment 11, 12 (Aug. 2018), 1849–1862. https://doi.org/10.14778/
3229863.3229872

[13] Linux Kernel Documentation. 2021. Huge pages. https://www.kernel.org/doc/
Documentation/vm/hugetlbpage.txt. [Accessed 20-Aug-2022].

[14] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’14). USENIX Association,
401–414.

[15] Simpson et al. 1996. PPP Challenge Handshake Authentication Protocol
(CHAP). Internet-Draft RFC 1994. Internet Engineering Task Force. https:
//datatracker.ietf .org/doc/html/rfc1994

[16] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS. In Proceedings of the 10th Conference on Inno-
vative Data Systems Research (CIDR’20).

[17] NVM Express Inc. 2021. NVM Express Base Specification, Revision 2.0a. https:
//nvmexpress.org/developers/nvme-specification/.

[18] NVM Express Inc. 2021. NVM Express over Fabrics, Revision 1.1a. https://
nvmexpress.org/developers/nvme-of-specification/.

[19] V. Kashyap. 2006. IP over InfiniBand (IPoIB) Architecture. Internet-Draft RFC 4392.
Internet Engineering Task Force. https://www.ietf .org/rfc/rfc4392.txt

[20] Linux kernel developers. 2021. The Linux NVMe driver. https://github.com/
torvalds/linux/tree/master/drivers/nvme. [Accessed 20-Aug-2022].

[21] The kernel development community. 2020. RDMA Controller. https://
www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/rdma.html. [Accessed
20-Aug-2022].

[22] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote
Flash ≈ Local Flash. In Proceedings of the Twenty-Second International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS’17). Association for Computing Machinery, 345–359. https:
//doi.org/10.1145/3037697.3037732

[23] Huy Nguyen. 2021. ConnectX-6DX/Bluefield-2 IPsec HW Full Offload Configu-
ration Guide. https://support.mellanox.com/s/article/ConnectX-6DX-Bluefield-
2-IPsec-HW-Full-Offload-Configuration-Guide. [Accessed 20-Aug-2022].

[24] Boris Pismenny. 2018. IPsec RoCEv2. https://linux-ipsec.org/wp-content/
uploads/slides/2018/RoCE-BP.pdf. [Accessed 20-Aug-2022].

[25] Hannes Reinecke. 2021. nvme: In-band authentication support. https://lwn.net/
Articles/868868/. [Accessed 20-Aug-2022].

[26] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
Technical Report RFC 8446. Network Working Group.

[27] Rami Rosen. 2013. Linux Kernel Networking: Implementation and Theory (1st ed.).
Apress, USA.

[28] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten Hoefler.
2021. ReDMArk: Bypassing RDMA Security Mechanisms. In Proceedings of the
30th USENIX Security Symposium (USENIX Security’21). USENIX Association.

[29] Seagate. 2021. Serial Attached SCSI (SAS). https://www.seagate.com/staticfiles/
support/disc/manuals/Interface%20manuals/100293071c.pdf. [Accessed 20-Aug-
2022].

[30] Anna Kornfeld Simpson, Adriana Szekeres, Jacob Nelson, and Irene Zhang. 2020.
Securing RDMA for High-Performance Datacenter Storage Systems. In Proceed-
ings of the 12th USENIXWorkshop on Hot Topics in Cloud Computing (HotCloud’20).
USENIX Association.

[31] Pure Storage. 2021. Pure Storage FlashArray//X. https://www.purestorage.com/
content/dam/pdf/en/datasheets/ds-flasharray-x.pdf. [Accessed 20-Aug-2022].

[32] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic, Adrian Schuep-
bach, and Bernard Metzler. 2019. Unification of Temporary Storage in the NodeK-
ernel Architecture. In Proceedings of the 2019 USENIX Annual Technical Conference
(USENIX ATC’19). USENIX Association, 767–782.

[33] Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler.
2020. sRDMA – Efficient NIC-based Authentication and Encryption for Remote
Direct Memory Access. In Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC’20). USENIX Association, 691–704.

[34] Mellanox Technologies. 2015. RDMA Aware Networks Programming User
Manual, Revision 1.7 . https://docs.nvidia.com/networking/display/

https://github.com/spcl/nevermore
https://ebpf.io/
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/rdma-core/
https://github.com/linux-rdma/rdma-core/
https://sata-io.org/
https://spdk.io/
https://www.tcpdump.org/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/infiniband/core/cm.c?h=v5.18.5##n842
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/infiniband/core/cm.c?h=v5.18.5##n842
https://www.infinibandta.org/ibta-specification/
https://doi.org/10.1109/PCCC.2018.8710776
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://docs.broadcom.com/doc/PS225-PB
https://doi.org/10.14778/3229863.3229872
https://doi.org/10.14778/3229863.3229872
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://datatracker.ietf.org/doc/html/rfc1994
https://datatracker.ietf.org/doc/html/rfc1994
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-of-specification/
https://nvmexpress.org/developers/nvme-of-specification/
https://www.ietf.org/rfc/rfc4392.txt
https://github.com/torvalds/linux/tree/master/drivers/nvme
https://github.com/torvalds/linux/tree/master/drivers/nvme
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/rdma.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/rdma.html
https://doi.org/10.1145/3037697.3037732
https://doi.org/10.1145/3037697.3037732
https://support.mellanox.com/s/article/ConnectX-6DX-Bluefield-2-IPsec-HW-Full-Offload-Configuration-Guide
https://support.mellanox.com/s/article/ConnectX-6DX-Bluefield-2-IPsec-HW-Full-Offload-Configuration-Guide
https://linux-ipsec.org/wp-content/uploads/slides/2018/RoCE-BP.pdf
https://linux-ipsec.org/wp-content/uploads/slides/2018/RoCE-BP.pdf
https://lwn.net/Articles/868868/
https://lwn.net/Articles/868868/
https://www.seagate.com/staticfiles/support/disc/manuals/Interface%20manuals/100293071c.pdf
https://www.seagate.com/staticfiles/support/disc/manuals/Interface%20manuals/100293071c.pdf
https://www.purestorage.com/content/dam/pdf/en/datasheets/ds-flasharray-x.pdf
https://www.purestorage.com/content/dam/pdf/en/datasheets/ds-flasharray-x.pdf
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+User+Manual
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+User+Manual
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+User+Manual

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Konstantin Taranov, Benjamin Rothenberger, Daniele De Sensi, Adrian Perrig, and Torsten Hoefler

RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+
User+Manual.

[35] Mellanox Technologies. 2019. Mellanox Introduces Breakthrough
NVMe SNAP Technology to Simplify Composable Storage. https:
//nvidianews.nvidia.com/news/mellanox-introduces-breakthrough-nvme-
snapTM-technology-to-simplify-composable-storage. [Accessed 20-Aug-2022].

[36] Mellanox Technologies. 2020. Mellanox BlueField Smart-
NIC. http://www.mellanox.com/related-docs/prod_adapter_cards/
PB_BlueField_Smart_NIC.pdf. [Accessed 20-Aug-2022].

[37] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang. 2019. Pythia: remote oracles
for the masses. In Proceedings of the 28th USENIX Security Symposium (USENIX
Security’19). USENIX Association, 693–710.

[38] Xilinx. 2021. Stand Alone NVMeOF Acceleration Solution. https:
//www.xilinx.com/content/dam/xilinx/publications/solution-briefs/NVMe-
oF%20SolutionBrief%20V5.pdf. [Accessed 20-Aug-2022].

[39] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang, Hongyi Liu, and Ang
Chen. 2021. Bedrock: Programmable Network Support for Secure RDMA Systems.
In Proceedings of the 31th USENIX Security Symposium (USENIX Security’22).
USENIX Association.

[40] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang, Yibin Shen, and Xin Long.
2020. High-Density Multi-Tenant Bare-Metal Cloud. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, 483–495. https://doi.org/10.1145/3373376.3378507

https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+User+Manual
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+User+Manual
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+User+Manual
https://nvidianews.nvidia.com/news/mellanox-introduces-breakthrough-nvme-snapTM-technology-to-simplify-composable-storage
https://nvidianews.nvidia.com/news/mellanox-introduces-breakthrough-nvme-snapTM-technology-to-simplify-composable-storage
https://nvidianews.nvidia.com/news/mellanox-introduces-breakthrough-nvme-snapTM-technology-to-simplify-composable-storage
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.xilinx.com/content/dam/xilinx/publications/solution-briefs/NVMe-oF%20SolutionBrief%20V5.pdf
https://www.xilinx.com/content/dam/xilinx/publications/solution-briefs/NVMe-oF%20SolutionBrief%20V5.pdf
https://www.xilinx.com/content/dam/xilinx/publications/solution-briefs/NVMe-oF%20SolutionBrief%20V5.pdf
https://doi.org/10.1145/3373376.3378507

	Abstract
	1 Introduction
	1.1 Overview of implemented attack classes

	2 Background on NVMe over RDMA
	3 Threat Model
	4 Security Analysis of RDMA Protocols in NVMe-oF
	4.1 Packet Injection
	4.2 Slow Down using Congestion Control
	4.3 Attacking RDMA connection manager
	4.4 RDMA Connection Exhaustion Attack

	5 Security Analysis of the NVMe-oF Protocol
	5.1 NVMe-oF and its Implementations
	5.2 Attacks on NVMe-oF
	5.3 Mitigations for NVMe-oF Vulnerabilities

	6 Related Work
	7 Conclusion
	8 Responsible Disclosure
	9 Availability of NeVerMore
	10 Acknowledgements
	References

