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Abstract—Increasing demand for real-time applications such
as teleoperation, remote control of a process, and live video
streaming has led to the need for more efficient and reliable
transport protocols that can satisfy strict latency requirements.
Emerging multipath communication can help to achieve such
goals. However, existing multipath protocols, such as Multipath
TCP and Multipath QUIC fall short on real-time applications,
as they rely on retransmissions and congestion control, leading
to higher latencies on lossy links. This paper proposes DMTP, a
new deadline-aware multipath transport protocol based on the
SCION Internet architecture to support real-time applications
with strict latency requirements. Our evaluations show that
DMTP outperforms Multipath TCP and Multipath QUIC over
lossy links by more than 40% in terms of the number of packets
transferred within their deadline when the loss rate is above 2%.

Index Terms—Multipath communication, deadline-aware
transport protocol, SCION Internet Architecture

I. INTRODUCTION

With the advent of the Internet of Things and Industry 4.0,
the number of devices connected to the Internet continues its
steep ascent. Along with their number, the capabilities and
functionalities of devices are also increasing [1]. A subset of
these devices provides real-time applications such as teleoper-
ation [2], remote process control, or live video streaming [3].
Such applications share a common characteristic: the traffic
they send is latency-sensitive, and often has strict deadline
requirements, which means that the data must be received
and processed within a specific time frame; otherwise, it
becomes irrelevant. Other requirements can vary among these
applications. Live video streaming, for example, can suffer
a few dropped frames as long as the liveness of the video
is maintained. On the other hand, remote process control
typically requires both reliability and recency of the data.
Sometimes, multiple real-time applications run in parallel
and they need to handle multiple data streams with different
requirements. Another application area that requires strict
deadline adherence is competitive online gaming. Periods of
higher latency than other players can result in a disadvantage
to a player. An example of this happened in the 24 hours of
Le Mans Virtual, where a professional racecar driver (Max
Verstappen) lost the race due to network lag [4]. In the realm
of real-time multiplayer games, the impact of delay on user
experience and gameplay is a critical consideration [5].

At the same time, the connectivity available to Internet de-
vices today is evolving with technologies such as 5G and low-
earth-orbit satellite constellations such as Starlink that provide
low-latency communication worldwide. As many Internet-
connected devices are multihomed and have multiple inter-
faces, e.g., smartphones with 5G and WiFi-based connections,
a protocol that utilizes these multiple heterogeneous paths
can be beneficial to latency-sensitive applications. Consider a
sample device with access to two paths: one path features high
bandwidth, but is lossy and has high latency, while another
path has low bandwidth, low latency, and low loss. In this case,
the high-bandwidth path could be used for most of the traffic,
and the low-latency path for retransmissions and acknowledge-
ments. Here the high-bandwidth link is utilized despite being
lossy, providing higher throughput for the application while
still satisfying the latency requirement. However, multihoming
provides only limited optimization potential, since the paths
in today’s Internet cannot be controlled by the end-user.
New Internet architectures such as SCION [6] provide end-
hosts with the capability of choosing the path(s) to use for
communication and supports communication over multiple
paths. With SCION’s path-aware forwarding, applications can
choose a set of paths that suit their needs based on a set of
available paths.

The topic of multipath transport has recently gained renewed
attention. Research in this diretion has already been con-
ducted in the field of multipath protocols with Multipath TCP
(MPTCP) [7]–[10] and Multipath QUIC (MPQUIC) [11]–
[14]. The aim of these protocols is to transport data reliably
such that no packets are discarded. The receiver acknowledges
the received packets, and the sender retransmits packets if
necessary, leading to higher latency on lossy links. This
is suitable for applications where reliability is critical, but
unsuitable for real-time applications as these protocols lack
strict latency guarantees. There have been attempts to combine
Forward Error Correction (FEC) with MPTCP and MPQUIC
to support latency-sensitive applications [10], [15]. However,
these attempts do not support path-aware networks like SCION
but instead rely on multihomed devices which are limited in
their path selection.

Therefore, this paper proposes DMTP, a deadline-aware
multipath transport protocol based on the SCION Internet ar-
chitecture. DMTP enables application developers to create an
end-to-end tunnel with hard latency requirements between twoISBN 978-3-903176-57-7© 2023 IFIP



nodes for real-time communication. Our protocol minimizes
late packet arrival in two ways: intelligent packet retransmis-
sion and FEC. Intelligent packet retransmission ensures that
retransmission occurs only when that packet can reach the
receiver within the specified deadline. FEC adds redundancy
packets so that some packets can be reconstructed at the
receiver in case of packet loss. Additionally, the protocol has
an optimization engine that can minimize the cost of trans-
mission through dynamic optimal path selection and optimal
distribution of data over those paths. Utilizing the path-aware
routing of SCION, our protocol monitors the available paths
and selects the optimal combination of paths with which the
deadline and reliability requirements of the application can be
satisfied with high probability while minimizing costs. How-
ever, the scope of this paper does not include an evaluation
of optimal path selection. Instead, it focuses on the effective
utilization of a set of preselected paths.

II. PROBLEM DESCRIPTION

The data flows in applications with strict latency require-
ments, such as teleoperation of machinery, videoconferencing
or remote control of industrial control systems, has a common
characteristic. The traffic must reach the receiver within a
specified timeframe. After that timeframe passes, the data is
no longer relevant. Therefore, this paper aims to develop a
deadline-aware multipath transport protocol, utilizing multiple
paths and FEC to satisfy deadline requirements with a high
probability while minimizing cost. In the context of this work,
the term cost specifically refers to the expenses associated
with transmitting data through a particular path. To this end,
given a set of paths, packet delivery importance and a reception
deadline, we define our problem as follows:

• Find an optimal combination of paths with the minimum
overall cost that can satisfy the reception deadline and
the overall bandwidth required to send the data streams.

• Find an adaptive FEC coding rate that can combat the
losses on the selected paths by using the minimum num-
ber of redundancy packets while continuously adapting
to changes in the loss rate.

• Determine a sending schedule that distributes redundancy
and data packets among the selected paths and follows
the packet delivery importance.

• Find a suitable retransmission threshold after which lost
packets are retransmitted if the reception deadline can be
satisfied.

III. RELATED WORK

Works related to deadline-aware transport protocols can
be broadly divided into three areas: single-path approaches,
multipath approaches, and FEC-based approaches.

A. Single-path Approaches

Shi et al. [16] introduce the Deadline-Aware Transport
Protocol (DTP), which is an extension to the QUIC [17] trans-
port protocol. DTP’s deadline-aware scheduler tries to deliver
blocks within the specified deadline. DTP takes into account

the time-sensitive nature of real-time traffic and prioritizes
packets based on their deadline. The protocol also uses a
dynamic window mechanism that adjusts the rate at which
packets are sent based on network conditions. Additionally,
DTP supports multiplexing of different streams with different
priorities and deadlines [16].

Unlike DTP, our protocol has a different design approach
where we utilize multiple paths and FEC to satisfy deadline
requirements with a high probability while minimizing cost.
Therefore, we are not comparing our protocol with DTP.

B. Multipath Approaches

Chuat et al. [18] investigate how to optimize communica-
tion in a path-aware multi-path network to meet a deadline-
constrained communication demand. The paper presents an
optimization problem for multipath communication, which
takes into account the path metrics, the communication de-
mand, and the deadline constraints. The notion of FEC is not
introduced in this work. The paper also provides a heuristic
algorithm to efficiently solve the optimization problem. This
algorithm is adapted in our protocol for selecting the optimal
path combinations.

MPTCP [19] extends TCP to support the utilization of
multiple paths between endpoints. This is achieved by splitting
a single connection into multiple subflows, each utilizing
a separate path, and reassembling the data at the receiver.
MPTCP uses mechanisms such as subflow management, con-
gestion control, and data mapping to coordinate the multiple
paths and provide a transparent and seamless experience to
the application layer. MPTCP has been widely researched and
evaluated in various scenarios and has been shown to provide
significant improvements in terms of reliability, performance,
and energy efficiency. MPTCP suffers from some of the
drawbacks of TCP. It can have head-of-line blocking at the
subflow level and the acknowledgements need to be sent
through the same path that data was sent. These drawbacks
make MPTCP unsuitable for deadline-aware communication
use cases.

Nguyen et al. [20] propose a method for improving the
performance of MPTCP. The authors argue that MPTCP’s
performance can be limited by its lack of path awareness,
i.e., it does not take into account the differences between
the various paths available for transmission. To address this
issue, the authors propose a path-aware approach to reinforce
MPTCP by incorporating information about the characteristics
of each path into the MPTCP protocol. Similarily, Dong
et al. [9] propose a loss-aware MPTCP scheduler, which
prioritizes subflows based on their current loss rate, in order
to enhance the performance of data transmission in highly
lossy networks. The scheduler monitors the loss rate of each
subflow, and dynamically adjusts the priorities of subflows
based on the loss rate. The path-awareness presented in these
two works provides more information on paths and improves
the scheduling in MPTCP. But it is different from path-aware
properties of Internet architectures like SCION. They are still



limited to multihomed devices and cannot utilize multiple
inter-domain paths as available through SCION.

De Coninck et al. [21] present MPQUIC, an extension of
the QUIC protocol which enables the use of multiple paths
for transmitting data between client and server to increase
performance, reliability, and resilience. The authors were able
to show that MPQUIC outperforms QUIC, TCP and MPTCP
in high bandwidth-delay product and lossy links for longer
data transfers. However MPQUIC suffers timeouts and retrans-
mission delays at higher loss rates, making it unsuitable for
latency-sensitive applications.

XLINK [12] provides a framework for MPQUIC transport
in large-scale video services, which can be used to optimize
the performance of the network with respect to Quality of
Experience (QoE). The proposed framework consists of a
scheduling algorithm, an accurate video streaming QoE model
and a smart packet reinjection algorithm to prevent head of line
blocking and reduce loading times. XLINK primarily focuses
on on-demand video streaming to multi-homed mobile devices
with a WiFi and a cellular connection. An adaptation of the
smart packet reinjection presented in this work is utilized in
our protocol.

As existing multipath approaches tailored to latency-
sensitive applications are mainly adaptations of MPTCP and
MPQUIC, we are evaluating our protocol against them. Unlike
these adaptations, our protocol supports path-aware networks
utilizing SCION and uses a combination of path selection,
adaptive FEC and smart packet retransmission.

C. FEC-based Approaches

FEC-based approaches can significantly improve deadline-
aware communication by introducing redundancy in the data
transmission, allowing for the recovery of lost or corrupted
packet without retransmission. Its addition can complement the
approaches mentioned previously as it provides an additional
layer of reliability and reduces delays due to retransmissions.

Ferlin et al. [10] present an approach to support latency-
sensitive applications over heterogeneous networks by com-
bining MPTCP and FEC. The approach is based on a client-
side adaptation of MPTCP that dynamically switches between
different paths combined with an FEC-based congestion con-
trol algorithm that adaptively adjusts the sending rate based
on feedback from the FEC receiver. However it does not offer
deadline guarantees and is limited to multihomed devices.

Vu and Wolff [15] discuss how FEC can be used as a
mechanism to support delay-sensitive applications, such as
video streaming, over MPQUIC [11]. The scheme uses a
combination of redundancy and interleaving techniques to
minimize the impact of packet losses. The results show that the
proposed scheme can improve the quality of video streaming
over an MPQUIC network. While this approach minimizes the
impact of packet losses, it does not offer deadline guarantees.

Additionally, there exist also adaptive FEC-based ap-
proaches where the coding rate dynamically adjusts to the
network conditions to improve transmission efficiency.

LightFEC [22] presents a new approach to FEC in networks
using a deep-learning technique. The proposed method is
designed to be lightweight and adaptive to changing network
conditions. The paper argues that traditional FEC methods
are ill-suited for dynamic network conditions, and proposes
a deep-learning based solution to overcome these limitations.

DeepRS [23] presents another approach to FEC in real-time
video communications using deep learning. The authors pro-
pose a network-adaptive FEC that uses a deep neural network
to predict the rate of errors in the network and adjusts the FEC
accordingly. The system aims to improve the efficiency of error
correction for real-time video communications in networks
with changing loss rates.

These two works show that an adaptive FEC algorithm leads
to a more efficient use of the available network resources
than a fixed FEC approach. This is essential for minimiz-
ing overhead and transmission cost, which are objectives of
our protocol. Our protocol employs a simpler algorithm for
adaptive FEC and we are aiming to improve it using neural
network based approaches like the two aforementioned works
in the future.

IV. SCION INTERNET ARCHITECTURE

SCION [6] is a secure next-generation Internet architecture
that provides route control, fault isolation, and explicit trust
information for end-to-end communication. One of the key
features of SCION is path-aware networking, where the end
hosts can choose the end-to-end paths, including all the inter-
domain hops. It enables several optimization possibilities for
the end user, such as choosing the optimal path or a com-
bination of paths for a specific application based on metrics
such as latency, jitter, bandwidth and cost. SCION opens up
possibilities of multipath communication beyond multi-homed
devices. It enables the use of multipath protocols even on
singly connected endpoints.

SCION introduces the concept of Isolation Domains (ISD),
which is a collection of Autonomous Systems (AS). An ISD
can represent domains such as, a geographical area, legal entity
or an organization. To govern an ISD, one or more ASes in it
forms the ISD core which provides connectivity to other ISDs
and manages the cryptographic trust root (TRC) of that ISD.
Routing between ASes within an ISD is isolated within that
ISD. Unlike today’s Internet, routing in SCION follows the
packet carried forwarding state (PCFS) methodology. Every
SCION packet will have the complete inter-AS path within its
header in the form of hop fields. Through the dissemination
of path-segment construction beacons (PCBs) from the core
ASes, paths segments are explored and end-to-end paths are
created by combining these path segments.

Figure 1 illustrates a SCION network with four ISDs and a
collection of ASes within each ISD. The blue and red paths
shows two of the possible end-to-end paths between AS C and
AS G.

There are several real-world deployments of SCION world-
wide, provided by eight Internet Service Providers [24]. These
deployments are running in parallel to today’s Internet. For
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Fig. 1. SCION network with four ISDs showing two of the possible end-to-
end paths between ASes C and G

research and running experiments on a SCION network,
SCIONLab provides a global SCION testbed where users can
create personal ASes [25].

V. DEADLINE-AWARE MULTIPATH TRANSPORT PROTOCOL

The goal of our Deadline-Aware Multipath Protocol is
to deliver data from one host to another within a speci-
fied deadline with minimum overhead and minimum cost.
Throughout the rest of the paper, the term protocol refers to the
Deadline-Aware Multipath Transport Protocol. Our protocol
runs in the user space and uses the path-aware networking
of SCION Internet Architecture for communication. As UDP
is the defacto transmission protocol upon which most real-
time and latency-sensitive protocols are built, we are using the
SCION version of UDP, SCION-UDP as our base transmission
protocol.

To fulfill the deadline and reliability requirements, we in-
corporate the following technologies into a transport protocol:

• Optimal path combination selection
• Smart packet retransmission
• Adaptive FEC
Chuat et al. [18] describe the optimal path selection for

deadline-sensitive data as an optimization problem. They have
proposed to use linear programming (LP) to select the optimal
paths and the proportion of bandwidth to assign to each path
while maximizing communication quality or minimizing cost.
We are adopting this strategy in our protocol. The heuristics-
based approach requires less computation compared to solv-
ing the LP problem, making it more suitable for scenarios
with limited computational resources or in highly dynamic
networks where path selection needs to be run at a higher
frequency. However, the heuristics-based approach might not
always find the optimal solution, as it relies on approximations,
while the LP-based approach guarantees optimality under
certain conditions. Thus, depending on the specific network
requirements and constraints, either the heuristic algorithm
alone may be sufficient, or a combination of LP and heuristics
may be needed for optimal path selection. Alternatively, the
Path-Aware Networking Application Programming Interface
(PANAPI) [26] may also be used for optimal path selection.

Smart packet retransmission ensures that retransmission
happens only if the retransmitted packet can reach the re-
ceiver within the required deadline and retransmission happens
through one of the fastest paths available.

FEC works by generating and sending redundancy packets
along with data packets to recreate packets lost in transmission.
It utilizes additional bandwidth to avoid retransmission. We
have opted to use Reed-Solomon coding [27] as our FEC
method as it supports multiple loss recovery. Our protocol
adjusts the coding rate according to the observed loss on each
path used.

A. Protocol Architecture
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Fig. 2. Protocol Architecture

Figure 2 shows the high-level architecture of our protocol.
The two nodes communicating with each other will have a
sender and receiver component. In the figure, only one sender
and receiver are shown for simplicity. The sender takes in
multiple streams of data and sends it to the receiver over



multiple available paths such that it reaches the receiver within
the specified deadline. For a particular incoming stream of
data, the first module that it encounters is the splitter. A block
of data written to the sender is termed a frame, and each
frame is given a monotonically increasing frame ID. A frame
is then split into equally sized chunks called fragments. The
size of the fragments can be set to maximize the utilization
of the available MTU of the selected paths. Fragments then
go through the encoder. Using Reed-Solomon coding, it adds
redundancy fragments to that particular frame. The encoded
frame is then added to the send queue. The scheduler takes
the frame from the send queue, adds a header to its fragments
and assigns them to different paths specified by the optimizer.
The scheduler also transfers that frame to the unacknowledged
(unack) queue. Each incoming stream has its own send queue
and unack queue.

At the receiver side, the received fragments are added to the
receive queue. The receive queue can handle fragments coming
in out of order. All the information needed for reassembly
is provided in the header, which will be discussed later in
this section. When a frame in the receive queue has enough
fragments to be decoded, it is then decoded, and fragments are
joined to form the original frame. The joined frame is then sent
out. The receiver also takes the header from the received pack-
ets and sends them back through the acknowledgement path
as acknowledgements. The receive memory enables dropping
duplicate fragments.

In the following paragraphs, the core mechanisms of our
protocol are described in detail.

Packet header: Figure 3 depicts the 8-byte header added to
packets by the protocol, containing all the information for the
receiver to identify the stream it belongs to, the frame ID, the
number of fragments in the frame, the number of redundancy
fragments and the amount of padding added to the fragment.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type StreamID FrameID

FragID FragCount RedunCount PadLen

Payload

. . . optional padding

Fig. 3. Header description

Optimizer: The optimizer takes in costs, available band-
width, one-way delay and loss of the paths available and the
deadline and bandwidth requirements of the data that needs
to be sent. As output, the optimizer provides the paths to
use, the fraction of bandwidth to assign to each path and the
retransmission path. The optimizer ensures that the selected
paths, in combination with the retransmission path, can satisfy
the deadline requirement while minimizing the transmission
cost. The optimizer uses a combination of linear programming
and heuristics [18] to determine the best path selection and
bandwidth allocation.

Retransmission: Let δ be the specified deadline, dmin be the

one-way delay of the retransmission path and dmax be the one-
way delay of highest latency path among the selected paths.
The maximum time it takes for an acknowledgment to reach
the receiver will be dmax+dmin. If there is loss, then the time
it will take for the retransmitted packet to reach the receiver
will be dmax + 2dmin. This value needs to be less than the
specified deadline δ. So for a retransmission to be effective, it
should happen right after dmax+dmin. This ensures that there
is enough time for all acknowledgements to be received and
time left to retransmit lost packets within the deadline. That is
the retransmission threshold. To this effect, a timer is attached
to each frame in the unack queue with its timeout being the
retransmit threshold. After the timeout, the scheduler checks if
the acknowledged fragments are enough to decode the whole
frame. If not, the unacknowledged fragments are retransmitted
through the retransmit path. This mechanism ensures that
there are no unnecessary retransmissions, and retransmission
happens only when the deadline can be satisfied. Figure 4
shows a sequence diagram of the retransmission mechanism
while delivering a frame having five fragments. In this case,
the optimizer selected Path 1 for transmitting all fragments
and selected the faster Path 2 for acknowledgments and
retransmissions. Fragments 2 and 4 were lost in flight. Sender
knows about the lost fragments from the acknowledgements
received through Path 2. It waits till the restransmit threshold
and sends the lost packets again through the faster Path 2.
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Fig. 4. Delivery of a frame with five fragments

Adaptive FEC: FEC trades additional bandwidth to avoid
retransmissions. Minimizing retransmissions can improve the
transmission delay beyond the specified deadline. However,
having a higher coding rate will lead to higher overhead in
terms of required bandwidth and computational resources.
Ideally, the coding rate should be just enough to overcome
the loss. In a dynamic environment such as the Internet, the
coding rate should be adapted according to the changes in loss
rate on paths to achieve higher efficiency. Another factor to
consider is the correlation of losses to additional bandwidth
introduced by the FEC [18]. We can de-correlate losses by
sending redundancy fragments over another path. Yu et al. [28]



demonstrate that in a network with multiple heterogeneous
disjoint paths, sending redundancy packets and data packet
through different paths reduces the effect of loss correlation
on FEC performance. Our protocol’s scheduler follows this
and sends redundancy fragments over a different path than the
one majority of the data fragments are sent on.

Reed-Solomon coding used in our protocol supports mul-
tiple erasures, enabling granular control over the coding rate.
Losses over the selected paths are calculated for every frame
from the acknowledgements, and the encoder stores a moving
window of previous losses measured. The max loss in this
window determines the coding rate for each frame. The upper
limit of the coding rate can be configured in the protocol to
limit the amount of additional bandwidth. In special cases
where the stream’s required bandwidth is low and the required
reliability is high, a coding rate of 1 can be chosen, which
duplicates the data over two paths. Our protocol allows users
to set different coding rate limits to different streams.

Interaction between retransmission and adaptive FEC:
Adaptive FEC requires the acknowledgements from a frame
to adapt to a change in the loss rate. This change can only
be made to the next frame. In this case and in cases where
the loss was higher than the number of redundancy fragments,
retransmission kicks in and ensures that the lost fragments are
retransmitted. Together, these two mechanisms work in tandem
to provide a robust and resilient data transmission. Overall,
the interaction between retransmission and adaptive FEC is
a key aspect of ensuring reliable and deadline bound data
transmission. By adjusting the settings for retransmission and
adaptive FEC, the system can be optimized to meet the specific
requirements of the application. For example, the coding rate
can be limited to a lower value to rely more on retransmission
in case of loss.

Multiplexing multiple streams with various requirements:
The protocol is designed in such a way that it supports multiple
streams with varying quality and reliability requirements. In
addition to the normal mode of operation, utilizing a combi-
nation of smart retransmission and adaptive FEC, streams can
be of the following modes: FEC only, smart retransmission
only, no FEC and no retransmission and finally, duplication
of data over multiple paths for very high reliability. The
last mode is only suitable for streams with low bandwidth
requirements. Additionally, a priority can be added to each
stream. The protocol should be configured with the number of
streams required and their desired properties during startup.
The encoder and the scheduler treat the frames according to
their streams’ configuration. The scheduler multiplexes the
streams to the selected paths following the priority assigned
to each stream.

Measuring path metrics: SCION’s beaconing provides the
provision for publishing the latency and bandwidth of path
segments [6]. If this information is available, it is used as the
starting point for running the optimizer. If not, the protocol
assumes that the paths are symmetric and measures the round
trip times of the available paths through SCMP [6] messages.
During run-time, our protocol sends probe packets at regular

intervals through the selected paths to calculate accurate
latency of those paths. Initially, the available bandwidth of
available paths is measured using probe packets following the
probe gap model. In the current version of our protocol, we
assume that all paths are disjoint. If high loss is observed
on a path due to congestion, either the optimizer will choose
another path or if no other path is available, the protocol will
inform the application that the overall available bandwidth is
lower and the application can choose to lower the sending rate.
Once the initial path metrics are collected, the optimizer can
select the optimal set of paths. Since acknowledgements are
sent on a different path, it is difficult to accurately measure
the one way delay of each path. So, probe packets are sent
at regular intervals over the selected paths to measure their
round trip time. Suppose there are more paths available after
the path selection. In that case, at least two more paths chosen
randomly are probed periodically so that the optimizer will
have their metric in case of a path failure or significant increase
in loss or latency on one or more of the chosen paths. The
loss rate is measured from the acknowledgements of each
frame sent. Since the scheduler knows the path each fragment
was assigned to, the loss rate of all the selected paths can be
calculated.

B. Prototype Implementation

A prototypical implementation of our protocol was devel-
oped in Go1 programming language version 1.16. The Path-
Aware Networking (PAN) library2 was used in the implemen-
tation to communicate with the SCION end host stack. The
prototypical implementation is developed in the form of a
library and this library can be used to add our protocol to
Go applications.

VI. EVALUATION

A test setup was created to evaluate our protocol using
two virtual machines (VM) running Ubuntu 22.04. Each VM
hosts a SCION AS by running the open source SCION stack3.
The virtual machines are hosted on a machine running AMD
Ryzen 5 2600 processor, and 8GB of ram is assigned to
each VM. Virtualbox4 provided the virtualization. Two SCION
paths with different properties were created between the two
ASes. Both paths are limited to a bandwidth of 15Mbps and
a latency of 60ms. Linux’s Netem [29] is used to limit the
bandwidth and induce losses on the paths. One of the paths is
set as the low-cost path and the other is set as the high cost
path. The gateways were built using our protocol and they are
designed provide an IP tunnel between the two nodes. The data
generator and sink are applications that only supports regular
IP communication, showing that our protocol can support
legacy IP application through gateways. The gateways were
configured to have a deadline requirement of 200ms. The path
parameters were chosen to show the behaviors of the protocol

1https://go.dev/
2https://github.com/netsec-ethz/scion-apps/tree/master/pkg/pan
3https://docs.scionlab.org/content/install/pkg.html
4https://www.virtualbox.org/
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at varying loss rates on the low-cost path ranging from low
levels to extreme levels. The low-cost and high-cost paths can
also be considered as the main path and a backup path, where
the backup path has a higher cost of transmission. Figure 6
illustrates the test setup.

Fig. 6. Test setup

For each experiment, the data generator at AS A generates
frames at a rate of 50 per second, with each frame having
a size of 24KB. That makes the required bandwidth around
10Mbps. Each experiment lasted for 50 seconds. During the
experiments, packet loss was induced on the low-cost path.
increasing in rate every 5 seconds. The loss rate induced
ranged from 0 to 10%. Figure 5 shows the dynamic behaviours
of the gateway during the experiments. The protocol chose the
low-cost path for most data transmission and the higher cost
path for acknowledgements, retransmission and redundancy
packets. Throughout the experiments, the gateways were able
to maintain a deadline of less than 200ms. When it detected
loss, retransmission was done and immediately, the coding
rate was adapted to overcome the observed loss and avoid
retransmission for the subsequent frames. We can see this
behaviour whenever the loss rate changes significantly. Even
at a loss rate of 10% on the high bandwidth path, the protocol
was able to deliver the frames reliably within the specified
deadline. With the combination of FEC and retransmission,

all frames sent were received within the deadline without any
frame loss.

Figure 7 shows the comparison of our protocol with MPTCP
and MPQUIC. The MPTCP module bundled with the Linux
kernel 5.15 and the default scheduler was used for this
experiment. The number of frames reaching the receiver within
the deadline decreases significantly above 0.5% loss rate when
using MPTCP. For the MPQUIC experiment, the go imple-
mentation of MPQIUC5 was used. This version of MPQUIC
does not use FEC. MPQUIC performed better than MPTCP
until 2% error rate. Above 2% loss rate, its performance
was significantly degraded. Below 0.5% loss rate, MPTCP,
MPQUIC and our protocol performed similarly.

Three versions of our protocol (only FEC, only smart
retransmission and both combined) were tested under the
different loss rates. As the protocol dynamically adjusts the
coding ratio of its FEC, a few frames will be dropped when
the loss rate changes suddenly in the FEC-only mode. But,
the average latency of frames reaching the receiver was closer
to the one-way delay of the main path being used which was
the low-cost path. In the smart retransmission-only mode, at
higher loss rates, the receiver waits for the lost packets to be
retransmitted and this raised the average latency of the frames
reaching the receiver. In this case no dropped frames were
observed. And finally, using a combination of FEC and smart
retransmission was tested. In this case spikes in latency were
observed only when the FEC coding rate was being adapted
and the average latency was closer to the one-way delay. The
Combination of FEC and smart retransmission resulted in zero
dropped frames even at a loss rate of 10%. Additionally, all
frames reached the receiver within the specified deadline.

Figure 8 describes the bandwidth usage of the low-cost

5https://github.com/Abdoueck632/mp-quic/
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Fig. 7. Percentage of frames completed before the deadline under different
loss rates.

and high-cost paths for different loss rates on the low-cost
path when a combination of FEC and smart retransmission
is used. Even at higher loss rates, our protocol was able to
utilize the low-cost path for sending the majority of the traffic
while still satisfying the reception deadline and minimizing the
overall transmission cost. Figure 9 describes the overhead of
our protocol in terms of additional bytes sent. This includes the
header added to each packet, retransmissions and redundancy
packets sent. Despite the higher amount of additional bytes,
DMTP always met the deadlines, even in scenarios with high
loss rates, whereas the other candidates dropped a high number
of frames.
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VII. DISCUSSION

The results of the evaluation demonstrate the effectiveness
of DMTP. Under the test conditions, it was able to maintain the
deadline of less than 200ms throughout the experiments, even
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Fig. 9. Percentage of additional bytes sent at various loss rates

when the loss rate was as high as 10%. The tests conducted
with different configurations of our protocol (only FEC, only
smart retransmission, and both combined) provided insights
into the trade-off between FEC and smart retransmission.
Based on these findings, the RETR option is best suited for
situations with long deadlines and when low-latency paths are
available, as it avoids the extra computational and bandwidth
requirements of FEC. Conversely, an FEC-only approach is
more effective when the required deadline is short and the path
latencies do not support retransmissions within the deadline.
For scenarios falling in between these two extremes, a combi-
nation of FEC and smart retransmission provides an optimal
balance of performance and resource efficiency. In the cases
with loss rates above 0.5% on the low-cost path, our protocol
outperformed MPTCP and MPQUIC by a significant margin.
Most of the frames sent through MPTCP and MPQUIC missed
their deadline when losses were encountered and in those
cases, DMTP was able to better utilize the available bandwidth
and satisfy the deadline. These factors show the effectiveness
of our protocol in latency sensitive use cases. Furthermore, our
protocol offers the flexibility to adapt to varying application
requirements and network conditions.

Besides the merits, DMTP has the following potential
limitations:

• Assumptions: The protocol makes assumptions about the
network conditions that may not hold in all cases, such
as the availability of accurate metrics or the presence of
disjoint paths.

• Deadlines may not be met in all cases: The protocol can
ensure that the deadlines are met under the assumption
that the path metrics measured are accurate and a combi-
nation of the available paths is able to satisfy the deadline
requirement.

• Resource utilization: our protocol requires computation
resources to run the optimization algorithm and to run
the encoder and decoder of FEC, making it not suitable
for significantly resource-constrained devices.



VIII. CONCLUSION AND FUTURE WORK

This paper aimed to develop a SCION-based transport
protocol for latency-sensitive real-time applications capable
of providing reliability and deadline guarantees utilizing
multiple heterogeneous paths while minimizing cost. DMTP
combines optimal path combination selection, smart packet
retransmission and forward error correction to ensure that the
deadline requirements of the application are satisfied with
high probability while minimizing transmission cost. DMTP
also supports multiple data streams with different latency
and reliability requirements. The evaluation result shows that
the proposed solution can effectively use multiple paths to
maintain the required deadline without missing any frames at
the receiver. The protocol performed well even at high loss
rates and the results also showed that DMTP outperforms
MPTCP and MPQUIC in a multipath network with lossy links.

Future work includes extending the path selection to in-
clude non-disjoint paths, passive measurement of available
bandwidth and investigating the use of deep reinforcement
learning for adaptive FEC and optimal path selection. Ad-
ditionally, extensive evaluation of optimal path selection in a
large topology, including the potential integration of PANAPI,
will be conducted in future research to further improve our
protocol’s performance and capabilities.
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