
LIAM: An Architectural Framework
for Decentralized IoT Networks

Piet De Vaere
Department of Computer Science

ETH Zürich
Zürich, Switzerland

piet.de.vaere@inf.ethz.ch

Adrian Perrig
Department of Computer Science

ETH Zürich
Zürich, Switzerland

adrian.perrig@inf.ethz.ch

Abstract—Today’s IoT deployments commonly resemble
walled gardens: they are closed ecosystems in which manufac-
turers maintain significant control over devices after they have
been deployed. This is typically the result of a centralized design
approach where devices heavily rely on a monolithic, vendor-
operated cloud service. We propose a distributed architecture
that liberates these devices—and their data—by considering IoT
devices as first-class network citizens and by grouping them
in trusted network zones. These network zones support the
devices contained in them by allowing tasks to be delegated
from the device to the zone. However, devices are considered
to be independent by default, and a task is only delegated when
it is impossible or undesirable for the device to perform this task
itself. We demonstrate how our architecture allows for novel
access-control methods and context-dependent network views.

I. INTRODUCTION

Recently, the Internet of Things (IoT) has been gaining sig-
nificant traction. That is, more and more devices—informally
called things—are being connected to the Internet, provid-
ing new functionalities and promising enhanced convenience.
However, today’s IoT platforms still face many challenges and
are by no means a mature technology. In fact, Gartner states
that IoT platforms are currently at their “peak of increased
expectations” and expects 5 to 10 years before the technology
matures [1].

One of the main shortcomings of today’s IoT platforms
is their lack of decentralization. Current market forces have
led to the development of centralized, cloud-supported IoT
architectures. While these architectures are easy to design and
manage, their design comes with three inherent shortcomings:
First, it leads to devices and data being locked in vertical
silos. These silos can typically only be connected using non-
standard interfaces at the application layer. Second, supporting
cloud services usually require privileged access to the devices
they assist. As these devices often reside in private locations,
this requires trusting the cloud operator (typically the device
vendor). Third, when cloud services cease to offer their
services (e.g., because of liquidation or planned obsolescence),
the functionality of the devices they assist decreases—in the
worst case to that of a paperweight.

In this paper, we propose LIAM1: an architectural frame-
work for decentralized IoT networks. LIAM avoids the short-
comings outlined above by considering IoT devices as first-

class network citizens that engage in direct end-to-end com-
munication with others. This is a vision that is shared by
both the World Wide Web Consortium (W3C) in the Web of
Things (WoT) working group [2] and the Internet Engineering
Task Force (IETF) in the Constrained RESTful Environments
(CoRE) working group [3]. In fact, supporting such an ar-
chitecture was one of the reasons for IPv6’s vast address
space [4].

Concretely, LIAM considers devices to be independent by
default, and to only delegate the specific functions for which
it is impossible or undesirable for the device to perform these
functions itself. Further, when functions are delegated, they are
not delegated to a centralized cloud service but to a trusted
LIAM zone. These zones group devices which are under the
same administrative control and replace the centralized cloud
services seen in current architectures. Similarly to cloud ser-
vices, LIAM zones do not suffer the same resource constraints
as IoT devices. In order to construct larger IoT networks,
logical links between LIAM zones can be created.

LIAM is explicitly designed as a framework; that is, many
aspects of its operation are left open to enable flexibility
and adaptability to different application scenarios. This allows
LIAM to maximally profit from current and future efforts
to standardize IoT protocols. Moreover, it makes LIAM in-
dependent from the—often tedious—semantic standardization
process [5], [6].

In this work, we define zone services for two device
functions: device announcement and access control. We choose
these services because they are essential in almost all IoT
environments. Specifically, device announcement is required
because the quantity and limited interfaces of IoT devices
make manual device identification impractical. Likewise, ac-
cess control is indispensible because of the sensitive nature
of most IoT devices: not only do they expose private data,
but they may also have to ability to perform security-sensitive
actuation.

Because of their importance, we consider device announce-
ment and access control to be core services of the LIAM archi-
tecture. Each LIAM-enabled device is able, but not obligated,

1LIAM stands for “Liam Includes Access Management”. We discuss the
rationale behind this name in Section IX.

to delegate these functions to its LIAM zone. However, as
LIAM is designed as an open system, additional zone services
can be added in the future.

The main contributions of this paper are:
• We present LIAM, a novel IoT architecture that considers

IoT devices as first-class network citizens and eliminates
the need for centralized cloud services.

• We present LIAM-Auth, an access-control mechanism
that leverages the LIAM architecture and simplifies
access-control management in IoT environments.

• We demonstrate how LIAM-Auth can be applied to a
directory service to create context-dependent network
views.

• We evaluate LIAM-Auth by implementing permission
tokens, an extension to OAuth, and evaluating this im-
plementation.

II. BACKGROUND

Being a framework, LIAM can make optimal use of existing
protocols and standards. In this section we first introduce
OAuth, which will serve as the base for the access-control zone
service. Next, we look at the most prominent IoT directory
proposals, which we will leverage to create a directory service.

A. OAuth and ACE-OAuth

OAuth is a widely deployed web authentication framework.
It allows the owner of a web resource to grant access to this
resource to a third party without requiring the resource owner
to share its credentials with this third party. Moreover, OAuth
allows the resource owner to limit the access rights of the
third party to a subset of its own rights. Two versions of OAuth
have been standardized by the IETF: OAuth 1.0 [7] and OAuth
2.0 [8]. This document considers only the latter.

Figure 1 displays an abstract OAuth protocol flow. In
Steps 1 and 2 the resource owner issues an access grant
to the client (i.e., the third party who wants to access the
resources). This process and grant can take multiple forms, as
is discussed below. Next, in Steps 3 and 4 the client exchanges
this authorization grant for an access token at the authorization
server. Finally, in Steps 5 and 6 the client uses this access token
to obtain access to the protected resource from the resource
sever.

The base specification of OAuth defines four types of
authorization grants. The most common of these is the “au-
thorization code” grant. When using this grant type, Step 1
consists of the client requesting the grant by redirecting the
resource owner (typically through browser redirection) to the
authorization server, where the resource owner is prompted to
approve the grant (e.g., “Do you want to grant Hooly access
to your Friendface pictures?”) If the grant is approved, the
authorization server redirects the resource owner back to the
client and includes an authorization code which functions as
the authorization grant. Besides the four standard grant types,
the OAuth specification also specifies a mechanism to support
additional grant types.

Client

Resource
Owner

Authorization
Server

Resource
Server

1

2
3

4

5

6

Auth.
Request

Auth.
Grant

Access
Token

Protected
Resource

Fig. 1: The abstracted OAuth 2.0 flow. 1) The client performs
an authorization request. 2) The resource owner issues an
authorization grant. 3) The client presents the authorization
grant and requests an access token. 4) The authorization server
issues an access token. 5) The client presents the access token
and requests access to the protected resource. 6) The protected
resource is served to the client.

The IETF’s Authentication and Authorization for Con-
strained Environments (ACE) working group is currently stan-
dardizing ACE using OAuth (ACE-OAuth) [9], an adaptation
of OAuth for constrained environments such as IoT networks.
ACE-OAuth adheres to existing specifications where possi-
ble, while specifying extensions where needed. For example,
OAuth handles token revocation by issuing both short-lived
access tokens and long-lived refresh tokens. Once an access
token has expired, the client can obtain a new access token
by presenting its refresh token to the authorization server. If
the client’s access is revoked, the authorization server will
not issue a new access token. While this approach is suitable
for typical web environments, it requires the authorization
and resource server to maintain a synchronized clock, which
may not be possible in constrained environments. Therefore
ACE-OAuth specifies a nonce-based mechanism to ensure the
freshness of access tokens.

B. W3C WoT and IETF CoRE Directories

Both the IETF (in the CoRE working group) and the
W3C (in the WoT working group) are currently standardizing
resource description and discovery in IoT environments. Con-
cretely, the IETF proposes the CoRE Link Format [3] while
the W3C proposes the Thing Description [10] format. Both
of these standards make it possible to describe the hosted
resources and interfaces of a server, but while the CoRE Link
Format has a low-level focus, Thing Descriptions focus on
providing rich device metadata. An example Thing Description
is shown in Figure 2.

Furthermore, both resource description standards also spec-
ify a directory service: the IETF specifies the CoRE Resource
Directory [11] and the W3C the Thing Directory [2]. These
directory services host multiple device descriptions in a central
location, rather than on each device individually.

{ "@context": "https://www.w3.org/2019/wot/td/v1",
"id": "urn:dev:ops:34532-LiamBulb-3445",
"title": "Liam Demo Bulb",
"securityDefinitions": {

"basic_sc": {"scheme": "basic", "in":"header"}
},
"security": ["basic_sc"],
"properties": {
"status" : {
"type": "string",
"forms": [{"href": "https://2001::42/status"}]
}

},
"actions": {
"toggle" : {
"forms": [{"href": "https://2001::42/toggle"}]

} } }

Fig. 2: An example Thing Description for a lamp which
exposes a “status” and “toggle” interface [10].

III. LIAM ARCHITECTURE

A. Overview

The main building blocks of the LIAM architecture are
virtual network zones. Devices are grouped in these zones
based on shared properties such as location, owner, function,
or subnet. Zone operators are free to use any set of properties
they desire.

Each network zone is identified by a zone URL pointing
to a zone manager service. Additional URLs using different
schemes may be assigned to the zone as well. When visiting
a zone’s URL, a zone description file is returned. This file is
similar in nature to the Thing Description in the W3C WoT
standard, and contains information about the LIAM zone and
the services it provides. The zone description file is not a static
file. Rather, its content and format will vary depending on
the relationship between the zone manager and the requesting
client.

Devices enter a zone by registering with the zone man-
ager, resulting in the establishment of a trust relationship
(see Section III-C). In order to construct larger networks,
zone operators can establish associations between zones (see
Section III-D). An example of such a network is shown in
Figure 3. When two devices are in different zones but a
path of associations exists between their zones, this path can
be used to create a trust relationship between these devices.
This relationship can then be leveraged for authentication and
authorization (see Section IV-A).

Besides grouping devices, the main function of LIAM zones
is to assist the devices they contain. Zones do this by allowing
their member devices to delegate tasks to the zone. Contrary
to today’s IoT architectures, these delegations only take place
when it is impossible or undesirable for the device to perform
these tasks itself. It is important to note that, by default,
devices are fully independent and that they only depend on
the network zone for the specific tasks they delegate.

In this paper, we propose two zone services which are part
of the core LIAM design: one for device announcements and

Babbage
family

Cottage Apartment
42

Living
room Kitchen

Building

Apartment
43

Fire
fighters

Utility
company

Smart
TV Doorbell Electricty

meter

Smoke
detector

Smart
bulb

Smart
TV

Doorbell
monitor

Smart
bulb

Smoke
detector

Entrance
doorbell

Entrance
lock

Fig. 3: A schematic example of a LIAM network. Rectangles
represent LIAM zones, ovals represent directory entries. Lines
indicate links between LIAM and the structure of the zone
directories.

one for access control. Moreover, LIAM is explicitly designed
to allow additional zone services to be added in the future.

The use of network zones provides the following advantages
over centralized architectures:

Efficiency: Network queries that only concern the local
zone can remain within that zone. This reduces network
load and latency.
Scalability: As multiple IoT networks can be intercon-
nected, networks can grow very large. Zoning allows for
network functions to scale horizontally rather than verti-
cally.
Federation: Each zone can be under a different authority
and can be administered independently.
Grouping: Zones create implicit logical groups of devices
and other zones. These groups can be used when configuring
access-control policies.
Flexibility: Devices are not bound to one specific service
instance. Rather, they are free to join any network zone that
offers the services they require.

B. Working Example

Figure 3 shows the LIAM network we will use as an
example throughout this paper. It displays the private IoT
network of the Babbage family in light grey. The Babbage
family lives in apartment number 42. They run a LIAM
zone on their home router to which they connect all the
IoT devices in their home. The main URL of this zone

is https://babbage.name/liam/apartment, and a
corresponding URL using the coaps:// scheme2 is defined.
For convenience, they create logical living room and kitchen
groups in the zone directory, in which they combine the
devices in each of these rooms. During the weekend, Mr. and
Ms. Babbage often spend time in their mountain cottage where
they have an Internet-connected television. This television is
a member of the LIAM zone managed by the router in the
cottage. Because they want to be able to access their archive
of recorded movies, both of their televisions should be in
the same LIAM network. Therefore, they create the Babbage
family zone which unites their cottage and apartment zones.

Some of the devices in the Babbages’ apartment are gen-
eral building utility devices (e.g., smoke detectors, doorbell
monitor, electricity meter). In order to grant access to these
devices to the building management, they have connected their
apartment 42 zone to the building zone. The building zone is in
turn connected to the fire-fighters and utitily-company zones
to grant them access to the smoke detectors and electricity
meter, respectively.

C. Device-Zone Interaction

Devices can join a LIAM zone by registering with the
respective zone manager. This registration consists of the
exchange of keying material between the device and the zone
manager. Because this keying material will only be used for
communication between the device and the zone manager, both
symmetric and asymmetric keys can be used and a plethora
of pairing techniques is available [13]–[17].

The LIAM zone maintains a set of attributes for each device.
These attributes can range from the device’s name and location
to a detailed description of the device’s interfaces or an
internal trust level. Because these attributes are, in principle,
only intended for zone-internal operations, they can be locally
specified.

Once the device is registered, it will have a more privileged
view of the zone description file discussed in Section III-A.
This view will include information about the services offered
by the zone and how to register for them. The format of the
zone description can also be modified to best suit the client
device. For example a resource-rich smart-TV may be served
a rich JSON document while a constrained temperature sensor
is served a file in CoRE Link Format.

In order to authenticate to the zone, standard TLS authen-
tication is used. In the case of asymmetric keying material,
authentication is performed through client certificates [18] or
raw public keys [19]. In the case of symmetric keying material,
the pre-shared key functionality of TLS is used [18]. The latter
approach allows even constrained devices to use standard TLS
without requiring them to perform asymmetric cryptographic
operations.

2The Constrained Application Protocol (CoAP) is a protocol similar to
HTTP optimized for constrained devices and networks. coaps indicates the
use of CoAP over Datagram TLS (DTLS) [12].

D. Zone-Zone Interaction

Larger IoT networks can be created by combining multiple
LIAM zones. This is done by creating point-to-point trust
relationships between zones, which results in a graph-like
network structure. An example of such a network can be seen
in Figure 3. The graph-like structure of LIAM networks is one
of its key strengths: whenever two nodes are a member of the
same (connected) LIAM graph, an implicit trust relationship
exists between them. Thus, when one explicit trust relationship
is created, potentially many more implicit trust relationships
are induced. These can then be leveraged to provide authenti-
cation as discussed in Section IV-A. Note that the strength of
implicit trust relationships is dependent on the strength of the
explicit trust relationships that induced it.

Zone linking is a process very similar to device regis-
tration. It consists of the exchange of keying material and
the establishment of internal attributes for the remote zone.
We explicitly do not specify a zone-linking protocol, as we
expect domain-specific mechanisms to emerge. For example,
the relationship between the building zone and apartment
zones in Figure 3 could be based on the physical security
of the cable connecting them. That is, an apartment building
could provide one network socket in each residence for which
it guarantees that the communicating party on the other end
is the building’s zone manager.

Once two zones are linked, they will provide each other
privileged access to their zone description files. For example,
a zone might provide a remote zone with permission tokens
granting access to devices it manages. We discuss permission
tokens in detail in Section IV-A.

IV. ZONE SERVICES

A LIAM zone provides zone services to its members. When
it is impossible or undesirable for a device to perform a certain
task and its LIAM zone operates a suitable zone service, the
device can delegate this task to the zone manager.

Tasks might be more suitable to be executed by the zone
manager rather than the IoT device for several reasons. For
example, zone managers can run on corded devices with high-
throughput network connectivity. This means that they do not
suffer from the resource constraints which are common in IoT
devices. Other notable reasons to delegate tasks include that it
allows device owners to aggregate administrative tasks at the
zone manager and that zone managers can leverage the trust
relationships between zones to perform their functions more
efficiently.

We demonstrate the utility of delegations by describing two
LIAM zone services: an access-control and a directory service.

A. Access Control

Motivation. Access control is a prime candidate for dele-
gation because IoT devices often do not have sufficient situ-
ational awareness for access-control decisions. For example,
a low-power light sensor cannot be expected to have a full
list of all authorized actors in its environment. Additionally,

managing and maintaining access-control lists on each individ-
ual device would be time consuming and cumbersome. Some
devices might not even have sufficient memory to store their
access policy. Moreover, access evaluation can be a complex
and resource-intensive task. For example, it might require
asymmetric cryptographic operations or the consultation of
remote revocation lists.

In contrast, zone managers do not suffer from the same
resource constraints as IoT devices. Moreover, they can
leverage the trust relationships induced by the LIAM graph
for access-control decisions. In order to demonstrate the
power of LIAM-based access control, we design LIAM-Auth:
a distributed authentication mechanism that leverages the
LIAM graph to simplify access control.

Overview. LIAM-Auth is designed as an extension to OAuth
that allows IoT devices to delegate access control to their
zone manager. Similar to standard OAuth, this is accomplished
through access tokens issued by the zone manager and ac-
cepted by the device. Additionally, LIAM-Auth allows zones
to further delegate these access-control rights to other zones.
This is accomplished through permission tokens (Ptokens), a
new and delegable3 type of OAuth authorization grant.

Ptokens are similar to access tokens in that they are associ-
ated with an access scope, but represent an authorization grant
rather than an access capability. This is a fundamental differ-
ence and means that they must be used during communication
with the authorization server rather than with the resource
server. During this communication, they will be exchanged
for an access token, which can then be used to access the
protected resource.

A second fundamental difference between access tokens and
Ptokens is that the holder of a Ptoken can generate a derived
Ptoken with a subscope of the original Ptoken and can forward
that token to another entity.

For example, consider that the electricity meter of
apartment 42 in Figure 3 uses LIAM-Auth. The apartment 42
zone may then issue a Ptoken to the building zone, which
may in turn issue a derived Ptoken to the utility company
zone. The utility company can then use this Ptoken to derive
Ptokens for its various services and employees. At each
point in this process the delegating zone can narrow the
access scope as appropriate. Assuming the final derived
Ptokens contain the correct scope, they can then be used to
obtain an access token to read out the electricity meter from
apartment 42’s authorization server. Finally, these access
tokens can be used to obtain access to the electricity-meter
readings. An abstract version of this flow is illustrated in
Figure 4.

Delegation of Ptokens. The main difference between
LIAM-Auth and OAuth is the ability to chain delegations.
This ability enables three advantages: First, it improves the

3Although somewhat odd looking, all significant dictionaries list “dele-
gable” as the derived adjective of “to delegate”. Not “delegatable”.

Resource
Zone

Resource
Server

Auth.
Server

Zone
Manager

Intermediary
Zone

Zone
Manager

Client
Zone

Zone
Manager

Client

1

2 3

45

6

7

8

Fig. 4: The LIAM-auth flow: 1) The resource server negotiates
access delegation with its zone manager. 2) The resource’s
zone manager issues a Ptoken to the intermediary zone. 3)
The intermediary issues a delegated Ptoken to the client zone.
4) The client zone issues a delegated Ptoken to the client. 5)
The client uses the Ptoken to request an access token from the
authorization server in the resource zone. 6) An access token
is issued to the client. 7) The client uses the access token to
request the resource. 8) The resource is sent to the client.

scalability of access control by allowing zone managers to
perform coarse-grained access control (through access-control
delegation). Nevertheless, zone managers retain the ability to
perform fine-grained access control by issuing narrow-scoped
tokens to local clients, and by performing additional checks
when exchanging Ptokens for access tokens. For example, the
apartment 42 zone in Figure 3 only needs to issue one Ptoken
to the building zone which contains all access scopes related
to building utilities. The building zone is then responsible for
delegating the correct access scopes to the fire fighters, utility
company, and its local clients. Nevertheless, the apartment 42
zone can still refuse to provide access tokens to clients, even
if they are able to present a valid Ptoken.

Second, LIAM-Auth simplifies access-policy management
by moving access-control decisions to administrators close to
the client. These administrators have a better understanding of
the client’s role and its access requirements. For example, in
the setting of Figure 3, the utility company is best suited to
decide which of its employees or services should be granted
access to the electricity-meter readings.

Third, LIAM-Auth makes the delegation of access rights
explicit. When an entity is granted an access permission, it
is effectively always able to delegate this permission (e.g.,
by operating a proxy service or by sharing its secret values).
Making this ability explicit does not only lead to more
transparency, but it also forces administrators to consider this
behavior when managing access rules.

Relation with OAuth. LIAM-Auth is implemented by
defining a new grant type for OAuth. This has a number
of advantages. First, implementing a new OAuth grant type
allows the resource server to be agnostic about the use of

LIAM-Auth: it still verifies access tokens in the same way as
before. This means that LIAM-Auth can be deployed without
any changes to the resource servers. As resource servers are
typically the most constrained nodes in IoT environments,
and might be hard to update, this backwards compatibility
significantly simplifies the deployment of LIAM-Auth for
devices already supporting (ACE-)OAuth.

Second, because Ptokens represent an authorization grant
rather than an access token, they do not give direct access to
protected resources. This means that the authorization server
can still perform additional checks before granting an access
token and, if necessary, refuse to do so.

Third, using OAuth allows LIAM-Auth to inherit OAuth’s
solutions to common access control problems such as access
revocation.

Implementation of Ptokens. We implement Ptokens as
cryptographic proof-of-possession tokens. Further implemen-
tation information is discussed in Section V.

B. Directory Service with Context-Dependent Network Views

Motivation. Advertising their presence and functionality
can be problematic for IoT devices because communication
constraints might make direct peer-to-peer discovery imprac-
tical. For example, devices might be sleeping, or they might
be connected to networks with high latency,4 or they might
lack support for efficient multicast communication.

Moreover, device-discovery mechanisms are usually limited
to a single layer 2 or 3 network scope, which does not
necessarily correspond to the set of entities with access rights
to a device. Ideally, devices should be visible to any entity
with access rights for it and invisible to all others.5 Both of
these difficulties can be overcome by operating a directory as
a LIAM zone service.

Overview. The LIAM zone operates a directory server and
allows zone members to insert records into this directory.
LIAM is agnostic as to which directory standard is used, but we
recommend the use of either the IETF’s Resource Directory
(RD) or the W3C’s Thing Directory (TD). Besides listing
descriptions of the interfaces to the various devices in the zone,
zone administrators can also add auxiliary information to the
directory, such as:

• a hierarchical directory structure;
• device annotations added by the zone based on the stored

device attributes;
• references to directories of linked LIAM zones; or
• information about the environment in which the devices

are placed and how the devices interact with that envi-
ronment.

Because this directory server runs on zone infrastructure
rather than the potentially constrained zone member devices,

4On low-power mesh networks with heavy duty cycling, RTTs in the order
of tens of seconds are not unusual

5Also the permission to discover a device can be seen as a minimal access
right.

Fire fighters

Building

Apartment 42

Smoke detector

Smoke detector

Apartment 43

Smoke detector

Smoke detector
...

Utility company

Building

Apartment 42

Electricity meter

Apartment 43

Electricity meter

...

Apartment 42

Doorbell

Electricity meter

Kitchen

Smoke detector

Smart bulb

Doorbell monitor

Living room

Smoke detector

Smart bulb

Smart TV

Building

Entrance doorbell

Entrance lock

Babbage family

Cottage

Smart TV

Fig. 5: Example of how the location in the LIAM graph
determines the view of the network. The root of each tree
corresponds to the vantage point of the client.

it does not suffer from the communication constraints outlined
above. Moreover, as this directory service is operated by the
zone manager, it can leverage the LIAM graph to perform
access control to the directory by using LIAM-Auth. That
is, it can distribute Ptokens to its neighbors granting them
access to a subset of the directory. These neighbors can then
create derived Ptokens—potentially with a narrower scope—
and forward them to their neighbors, propagating access to the
directory through the network.

The result of this is that depending on the network position
of a directory client, this client will receive a different set
of Ptokens, resulting in a different view of the network. We
call this a context-dependent network view, and demonstrate
its effect in the example below.

Consider the LIAM network shown in Figure 3, in which
all LIAM zones are operating a directory service. Within the
Babbages’ private network, the LIAM zones are fully trusted.
Therefore, Ptokens which grant access to the full directory
content are distributed between the grey nodes in the network.
Conversely, the building zone is only minimally trusted and
is given a Ptoken which only grants access to the building
utilities in the directory, without displaying the directory’s
internal structure.

Similarly, the building zone issues a Ptoken to each apart-
ment zone which allows listing of the building infrastructure
devices (e.g., the entrance doorbell and lock). Moreover,
from each Ptoken received from the apartment zones, the
building zone creates a derived Ptoken granting access to
the fire-prevention systems and forwards this token to the
fire department. Analogously, the building zone also creates

Ptokens granting access to the electricity meters and forwards
these tokens to the utility company.

Once all of these tokens have been distributed, each of the
zones will possess Ptokens granting them access to different
subsets of the directories. The effect of this is that when
querying the directory service, each of them will receive
a different set of answers, resulting in a different, context-
specific, view of the network. As an illustration, the directory
views of the fire fighters, utility company and apartment 42
are shown in Figure 5.

Note that, for simplicity, we have only discussed Ptokens
granting access to specific parts of the device directory. In
practice these Ptokens would also contain scopes allowing
clients to interact with the devices themselves.

V. OAUTH PERMISSION TOKEN IMPLEMENTATION

We now discuss the implementation of the permission
tokens (Ptokens) introduced in Section IV. Ptokens represent
a delegable access permission to a set of protected resources.
When a token contains a delegated permission, we refer to it
as a derived Ptoken. We refer to a token that is not derived
from any other token as a base Ptoken.

A Ptoken implementation should have the following prop-
erties:

Verifiable: Given a Ptoken, it should be possible for a
LIAM zone to efficiently verify if this token is, or is derived
from, a base Ptoken issued by that zone.
Delegable: It should be possible for the holder of a Ptoken
to delegate the rights granted by the Ptoken to a third party.
Scope refinement: It should be possible to narrow the
scope of a Ptoken during the delegation process. It should
never be possible to broaden the scope of a Ptoken.
Transparent: The issuer of a base token should be able to
inspect the delegation chain when it receives a token derived
from that base token.
Robust against disclosure: Leakage of a Ptoken should
have minimal impact.
The last requirement is necessary because Ptokens are

exposed to potential leakage as they move through the network
(even when encrypted) and because a Ptoken—in contrast to
an access token—can serve as the basis for additional tokens.
Thus, the revocation of a single Ptoken can lead to entire
sections of a LIAM network having reduced access rights.

Based on these requirements, we explore two Ptoken im-
plementations: one based on asymmetric cryptography and
one based on symmetric cryptography. We refer to these as
asymmetric and symmetric Ptokens, respectively.

A. Notation

We use the following notation: K and K−1 denote a
public and private asymmetric key, respectively; k denotes
a symmetric key; EK(x) denotes encryption of x under K;
H(x) denotes the result of applying a one-way hash function
to x; MACk(x) denotes the Message Authentication Code of
x using key k; and a|b denotes a concatenated with b.

B. Asymmetric Ptoken Design

The asymmetric Ptoken is implemented as a cryptographi-
cally secured proof-of-possession token. That is, it is verified
by a cryptographic operation rather than a database lookup
and requires the token presenter to demonstrate knowledge of
an asymmetric private key before it can use the token.

Cryptographically securing a token makes it possible for the
receiver to verify the token with only local knowledge, which
is required for the verifiability requirement. Using proof-of-
possession tokens significantly reduces the effect of token
disclosure as the Ptoken cannot be used without knowledge
of the corresponding private key.

An asymmetric Ptoken consists of a sequence of token seg-
ments interleaved with signatures validating these segments. A
base token (i.e., a token without delegations) has the structure:

Token0 = segment0 | EK−1
0

(H(segment0)),

where the issuing entity has the key pair (K0,K
−1
0) and the

token segment contains the following fields:
TokenID: an identifier unique to each token.
Delegation counter: a positive integer indicating the max-
imum allowed length of the delegation chain based on this
token segment.
Name: a unique identifier of the token receiver.
Pubkey: the asymmetric public key (K1) of the receiver.
The token will be bound to the private key corresponding
to this public key.
Scope: a set of access scopes to which this token grants
access.
Time range: a time range during which the token should
be accepted by the authorization server.

The validity of this token can be verified using the public key
of the issuer, K0.

In order to create a delegation, the token receiver can extend
the base token by appending an additional segment and signing
the resulting token with its private key. Assuming the receiver
of the base token has the key pair (K1,K

−1
1), the resulting

token then has the following structure:

Token1 =

token0 | segment1 | EK−1
1

(H(token0 | segment1)).

Additional delegations can be created by analogous extension
of this token resulting in:

Tokeni =

tokeni−1 | segmenti | EK−1
i

(H(tokeni−1 | segmenti)).

A token is considered valid if the following conditions hold:
• The signature chain is valid. That is, each segmenti is fol-

lowed by a signature using the private key corresponding
to the public key listed in segmenti−1. Or, if i = 0, by
the private key of the base token issuer.

• For each i > 0 it holds that scopei ⊆ scopei−1, where
scopei is the scope listed in the i-th segment.

• For each i > 0 it holds that 0 ≤ counteri < counteri−1,
where counteri is the delegation counter value of the i-th
segment.

• For each i > 1 it holds that timei is contained in timei−1

where timei is the time range of the i-th segment and
that the current time is within the most constraining time
range.

C. Symmetric Ptoken Design

Symmetric Ptokens have a similar structure as asymmetric
Ptokens but are bound to a symmetric key rather than to
an asymmetric key. The entity issuing a symmetric Ptoken
maintains a master key kM from which it derives a token-
specific key k0 as described below.

A symmetric Ptoken consists of a sequence of token seg-
ments terminated by an authentication tag. A base token (i.e.,
a token without delegations) has the following structure:

Token0 = segment0 | MACk0
(segment0),

where k0 is obtained as H(segment0|kM), with the hash
function being used as a forward-secure pseudorandom bit
generator [20]. The token segment contains the following
fields:

TokenID: an identifier unique to each token.
Delegation counter: a positive integer indicating the max-
imum allowed length of the delegation chain based on this
token segment.
Name: a unique identifier of the token receiver.
Scope: a set of access scopes to which this token grants
access.
Time range: a time range during which the token should
be accepted by the authorization server.

When issuing this token, the issuing entity sends the token
receiver both token0 and k1 = H(k0). In order to use token0,
the token presenter needs to cryptographically demonstrate
knowledge of k1. Note that because k1 needs to be transported
over the network, using symmetric proof-of-possession tokens
provides less robustness against disclosure than using the
asymmetric approach. However, securing a short key during
transmission and storage is still easier than securing the
entire token. Moreover, the key must not be transmitted when
exchanging a Ptoken for an access token (Steps 5 and 6 in
Figure 4), which is the only transmission in the life cycle of
a Ptoken during which no pre-established keying material can
be used.

In order to create a delegation, the token holder can extend
the base token by removing the authentication tag, adding an
additional segment, and reauthenticating the token as

Token1 = segment0 | segment1 |
MACk1

(MACk0
(segment0) | segment1).

It would then issue this token together with k2 = H(k1) to
the token receiver.

Additional delegations can be created through analogous
extension of this token resulting in:

Tokeni = segment0 | . . . | segmenti−1 | segmenti |
MACki

(tagi−1 | segmenti),

where tagi−1 is the authentication tag of tokeni−1. Intermedi-
ate authentication tags do not need to be included in the token,
as they can be calculated by the verifier.

Tokeni is issued together with (and bound to) key ki+1 =
H(ki). Because of the structure of the keys, it is possible for
the holder of ki to calculate kj for any j ≥ i. However, as
with every token derivation the included scope can be only
narrowed, this is not an issue: knowledge of kj never grants
more privileges than knowledge of ki.

A token is considered valid if the following conditions hold:
• The authentication tag of the token is valid. This implies

that all intermediate authentication tags were also valid.
• For each i > 0 it holds that scopei ⊆ scopei−1, where

scopei is the scope listed in the i-th segment.
• For each i > 0 it holds that 0 ≤ counteri < counteri−1,

where counteri is the delegation counter value of the i-th
segment.

• For each i > 1 it holds that timei is contained in timei−1

where timei is the time range of the i-th segment and
that the current time is within the most constraining time
range.

VI. EVALUATION

We implement both the asymmetric Ptoken and symmetric
Ptoken in Python and provide two sets of evaluations. In
the first set, we benchmark the Ptokens in isolation (Sec-
tion VI-A). For the second set we implement an HTTP server
which performs Ptoken creation and verification in response
to incoming requests (Section VI-B).

Our implementation uses SHA-256 as the hash algorithm,
HMAC with 256-bit keys to generate authentication tags,
and Ed25519 as the signature algorithm. All evaluations are
performed using a single thread on an eight-core Intel i7-
7820X 3.6 GHz processor with 32 GB of DDR4 2666 MHz
memory.

A. Token Performance

We first discuss the performance of our Python Ptoken
implementation in isolation. We benchmark the creation,
derivation, and verification of Ptokens by measuring the time
required to perform each of these operations 106 times. For
each operation we execute the steps described below.

Token creation: A new Ptoken is created, serialized, and
authenticated.
Token derivation: A base Ptoken is deserialized. Next, a
derived token is generated, serialized, and authenticated.
Token verification: A base Ptoken is deserialized and its
validity is verified.

Figure 6 displays the results of the benchmarks. In order
to evaluate the effect of the token length on the verifica-
tion times, we additionally perform 104 token validations

Creation Derivation Verification
0

1

2

3
To

ke
n

op
er

at
io

ns
pe

rs
ec

on
d

[x
1
0
4
] Symmetric Asymmetric

Fig. 6: Performance of the Ptoken implementations for the
three main Ptoken operations.

1 2 4 8 16 32 64 128 256 512
Token length [segments]

102

103

104

To
ke

n
ve

rifi
ca

tio
ns

pe
rs

ec
on

d

Symmetric
Asymmetric

Fig. 7: The influence of the length of a Ptoken on its validation
speed.

for tokens with length (expressed in number of segments)
2n, n = {0, 1, . . . , 9}. The results are shown in Figure 7.

From Figure 6 we see that the processing speeds for
symmetric and asymmetric Ptokens are within the same order
of magnitude. However, tokens using symmetric cryptography
outperform their asymmetric counterparts by a factor of 1.5
to 3, depending on the operation. These numbers fall in line
with the expectations given the speed of HMAC and Ed25519
operations on the benchmark hardware. Figure 7 shows that
token-verification times increase linearly with the token length
(note the double-logarithmic axis).

B. HTTP Endpoint Performance

In order to gauge the performance impact of using Ptokens
at an authentication endpoint, we have implemented an HTTP
server using the Python Flask framework,6 which issues and
verifies Ptokens in response to incoming requests. We issued
105 token creation and verification requests for both Ptoken
types. Furthermore, to obtain a baseline measurement we
created a dummy endpoint which uses static tokens. When
a client requests a token from this endpoint, a static string
is returned. Similarly, when a client presents a token to this
endpoint, the validity is verified by comparing the presented
token to a static string.

As Ptokens act as proof-of-possession tokens, the authenti-
cation endpoint must verify ownership of the key bound to the
presented token. Our HTTP server performs this verification

6https://palletsprojects.com/p/flask/

Client
Token

endpoint

Symmetric Ptoken request
GET /request

symmetric Ptoken + key

Symmetric Ptoken verification
POST /verify + Ptoken + scope

nonce

POST /verify + Ptoken + scope + MAC(nonce)

access token

Fig. 8: The protocol flow of the HTTP symmetric Ptoken
endpoint.

Static Symmetric Asymmetric
0.0

2.5

5.0

7.5

E
nd

po
in

to
pe

ra
tio

ns
pe

rs
ec

on
d

[x
1
0
2
]

100%

76% 72%
100%

37% 36%

Creation
Verification

Fig. 9: Ptoken issuance and validation speeds of a Ptoken
enabled HTTP endpoint.

using a nonce-based challenge–response protocol. Figure 8
illustrates this for symmetric Ptokens. The protocol for asym-
metric Ptokens is similar but requires the client to attach its
public key to the token request and uses a signature rather than
an authentication tag in the verification phase. The results of
the performance benchmark of the HTTP endpoint are show
in Figure 9.

Figure 9 shows that the overhead of Ptoken creation dur-
ing a token request is limited: only 24% (symmetric) to
28% (asymmetric) fewer tokens can be issued than when
the server simply returns a static string. The performance
impact for token verification is more significant, but can
largely be attributed to the additional roundtrip required to
verify knowledge of the key bound to the Ptoken. Note that
we did not use TLS during these benchmarks. If we did,
these performance penalties would likely be less significant,
as additional round trips to establish the TLS connection
would be required for all interactions. Moreover, when using
asymmetric tokens, the challenge–response protocol can be
eliminated by authenticating the client during TLS session
establishment.

VII. DISCUSSION

We designed LIAM as a framework for decentralized IoT
networks that overcomes the inherent shortcomings of cen-
tralized IoT architectures: vertical silos are prevented by
encouraging direct device-to-device communication; cloud ser-
vices are replaced by trusted network zones; and rather than
being bound to a specific cloud service, devices can join any
zone offering the services they require. Additionally, LIAM
allows for new access-control methods and introduces context-
dependent network views.

Both these access-control methods and context-dependent
network views rely on a new OAuth authorization grant type
using permission tokens (Ptokens). We implemented these
Ptokens as proof-of-possession tokens which provide verifi-
ability through cryptographic operations; allow for delegation
and scope refinement with a transparent delegation chain; and
provide robustness against disclosure by requiring the token
presenter to demonstrate knowledge of a cryptographic key.

Evaluating our Ptoken implementation shows that their use
results in only a small performance reduction, and is likely
to be faster than even basic database lookups. Given that
asymmetric Ptokens do not require the transmission of private
keying material over the network during the issuing process
(in contrary to symmetric Ptokens), but result in only a
moderate performance decrease over symmetric Ptoken, the
use of asymmetric Ptokens is generally preferable. Moreover,
LIAM-Auth is designed not to require constrained devices
to perform operations on Ptokens. This considerably reduces
the significance of the performance decrease introduced when
using asymmetric Ptokens, further making the case for their
use.

We also find that—unsurprisingly—Ptoken verification
times increase linearly with the token length. However, as
we expect delegation chains to be short in practice, this is
acceptable. This expectation comes from the observation that
long delegation chains dilute the strength of trust relationships:
you trust your daughter more than you trust the husband of
the cousin of the banker of your sister. Therefore, we expect
long delegation chains to be treated similarly to unprivileged
access in practice.

This trust dilution is exacerbated by the fact that LIAM does
not use a global root of trust for authentication: that is, linking
cryptographic keys to identities is done through claims made in
Ptokens by remote zones. Providing global identities in LIAM,
for example, through the use of a public key infrastructure, is
considered as a future research direction.

Other future work includes creating additional zone services
such as centralized device management or the offloading of
resource intensive (cryptographic) operations. Finally, we see
research opportunities in exploring how LIAM interacts with
the underlying network. For example, by provisioning devices
with network configuration, or by automatically creating com-
munication channels between devices (e.g., by opening up
firewalls or creating network tunnels).

VIII. RELATED WORK

A. Access Management
Even though the need for access control and data pri-

vacy has been clear from the very beginning of ubiquitous
computing [21], today’s IoT deployments are plagued by
access-control and over-privilege issues [22]–[26]. There is a
significant body of recent work that discusses access control
for cloud-based IoT platforms [27]–[30].

The IETF ACE working group is currently standardizing
ACE-OAuth, an adaptation of classic OAuth to constrained
environments [9]. Other mechanisms to use OAuth in IoT
environments have also been proposed [31]–[33]. However,
similarly to standard OAuth, these do not allow delegation
chaining.

Most other proposals for capability-based access control in
IoT networks either do not discuss delegation chaining [34]–
[36] or require the involvement of the authorization server for
each delegation [37], [38].

Gusmeroli et al. propose a capability token that allows
delegation chaining without the involvement of an authen-
tication server [39]. However, their mechanism is unsuited
for constrained environments. For example, it requires token
revocations to be distributed to resource servers which must
cache them.

B. IoT Architectures
A number of IoT architectures have been proposed. Many

authors propose the use of an “IoT Hub”. This hub iso-
lates the IoT device from the Internet, and aims to provide
manageability, connectivity, and security [40]–[47]. However,
these proposals retain the use of centralized architectures, and
therefore do not solve their fundamental problems.

The IETF’s CoRE working group is designing an IoT
architecture that follows the Representational State Trans-
fer (REST) model. In their architecture, devices expose a
RESTfull interface that provides direct access to the resources
they represent (e.g., a light switch, or a temperature sensor).
Resource discovery can be performed by visiting a well-
known URL on each network device [3]. Alternatively, a
resource directory can collect information about resources held
on other devices, and allow other hosts to query for this
information [11].

The WoT working group of the W3C envisions an architec-
ture similar to that of the IETF’s CoRE working group [2], but
at a higher level. The main element of the WoT architecture
is the Thing Description format [10], which can be used
to describe the network interfaces of IoT devices. Thing
descriptions use the Resource Description Format (RDF) data
model [48], which can be used to model rich metadata about
devices and their surroundings. In order to ensure backwards
compatibility, Thing Descriptions do not need to be hosted on
the IoT devices they describe.

What all of these proposals lack, is clear support for
interconnected IoT networks. That is, they are designed for
single network deployments, without a clear vision of how to
scale to distributed deployments at Internet scale.

C. Function offloading

There have been multiple proposals to offload functionality
from constrained devices. In fact, the current common practice
in IoT deployments is to offload as much functionality as
possible from the IoT devices to a centralized cloud. The rising
need for low-latency data processing led to the development
of fog computing, an architecture in which the tasks typically
executed on a centralized cloud are executed on network edge
devices instead [49].

Other forms of function offloading include (D)TLS hand-
shake offloading [50], and the offloading of digital signa-
tures [51].

IX. CONCLUSION

Today’s IoT platforms typically resemble centralized silos.
While easy to develop and maintain, these architectures lead
to vendor dependence. In this paper we present LIAM, a
decentralized IoT architecture that groups devices in zones,
allows devices to offload tasks to their zone, and allows logical
linking between zones to construct larger networks.

Because zone links imply a trust relationship, LIAM is
intrinsically suited to support authentication and access man-
agement. This is an important feature not shared by other
distributed IoT architectures, which typically mimic the Web.

In contrast to access control on the Web, where data is
public-by-default and add-hoc security mechanisms are used
to provide access control when needed, access management is
needed in almost every IoT architecture, as data is private-by-
default and should only be accessible to entities who have been
explicitly granted access. LIAM recognizes this difference, and
requires entities to have explicit consent for every operation,
including device discovery. We reflect this in LIAM’s name:
Liam Includes Access Management.

REFERENCES

[1] Gartner, Inc., “Gartner hype cycle for emerging technologies,” Aug.
2018. [Online]. Available: https://www.gartner.com/smarterwithgartner/
5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/

[2] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura,
and K. Kajimoto, “Web of things (wot) architecture,” W3C,
W3C Candidate Recommendation, May 2019. [Online]. Available:
https://www.w3.org/TR/2019/CR-wot-architecture-20190516/

[3] Z. Shelby, “Constrained RESTful Environments (CoRE) Link Format,”
RFC 6690, Aug. 2012. [Online]. Available: https://rfc-editor.org/rfc/
rfc6690.txt

[4] F. Kastenholz and D. C. Partridge, “Technical Criteria for Choosing
IP The Next Generation (IPng),” RFC 1726, Dec. 1994. [Online].
Available: https://rfc-editor.org/rfc/rfc1726.txt

[5] J. Jimenez, H. Tschofenig, and D. Thaler, “Report from the Internet of
Things (IoT) Semantic Interoperability (IOTSI) Workshop 2016,” RFC
8477, Oct. 2018. [Online]. Available: https://rfc-editor.org/rfc/rfc8477.
txt

[6] C. Groves, L. Yan, and Y. Weiwei, “Overview of IoT
semantics landscape,” Huawei Technologies, techreport, 2016.
[Online]. Available: https://www.iab.org/wp-content/IAB-uploads/2016/
03/IoTSemanticLandscape HW v2.pdf

[7] E. Hammer-Lahav, “The OAuth 1.0 Protocol,” RFC 5849, Apr. 2010.
[Online]. Available: https://rfc-editor.org/rfc/rfc5849.txt

[8] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct.
2012. [Online]. Available: https://rfc-editor.org/rfc/rfc6749.txt

[9] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,
“Authentication and Authorization for Constrained Environments
(ACE) using the OAuth 2.0 Framework (ACE-OAuth),” Internet
Engineering Task Force, Internet-Draft draft-ietf-ace-oauth-authz-
24, Mar. 2019, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-ietf-ace-oauth-authz-24

[10] S. Käbisch, T. Kamiya, M. McCool, and V. Charpenay,
“Web of things (wot) thing description,” W3C, W3C
Candidate Recommendation, May 2019. [Online]. Available:
https://www.w3.org/TR/2019/CR-wot-thing-description-20190516/

[11] Z. Shelby, M. Koster, C. Bormann, P. V. der Stok, and C. Amsüss,
“CoRE Resource Directory,” Internet Engineering Task Force,
Internet-Draft draft-ietf-core-resource-directory-23, Jul. 2019, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-core-resource-directory-23

[12] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, Jun. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7252.txt

[13] F. Stajano and R. Anderson, “The resurrecting duckling: Security issues
for ad-hoc wireless networks,” in International workshop on security
protocols. Springer, 1999, pp. 172–182.

[14] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong, “Talking to
strangers: Authentication in ad-hoc wireless networks.” in NDSS, 2002.

[15] M. Cagalj, S. Capkun, and J. . Hubaux, “Key agreement in peer-to-
peer wireless networks,” Proceedings of the IEEE, vol. 94, no. 2, pp.
467–478, Feb 2006.

[16] J. M. McCune, A. Perrig, and M. K. Reiter, “Seeing-is-believing:
using camera phones for human-verifiable authentication,” in 2005 IEEE
Symposium on Security and Privacy (S P’05), May 2005, pp. 110–124.

[17] C. Castelluccia and P. Mutaf, “Shake them up!: A movement-based
pairing protocol for cpu-constrained devices,” in Proceedings of the 3rd
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’05. New York, NY, USA: ACM, 2005, pp. 51–64.
[Online]. Available: http://doi.acm.org/10.1145/1067170.1067177

[18] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://rfc-editor.org/
rfc/rfc8446.txt

[19] P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, and T. Kivinen,
“Using Raw Public Keys in Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS),” RFC 7250, Jun. 2014.
[Online]. Available: https://rfc-editor.org/rfc/rfc7250.txt

[20] M. Bellare and B. Yee, “Forward-security in private-key cryptography,”
in Topics in Cryptology — CT-RSA 2003. Springer Berlin Heidelberg,
2003, pp. 1–18.

[21] M. Weiser, R. Gold, and J. S. Brown, “The origins of ubiquitous
computing research at PARC in the late 1980s,” IBM Systems Journal,
vol. 38, no. 4, pp. 693–696, 1999.

[22] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Security impli-
cations of permission models in smart-home application frameworks,”
IEEE Security & Privacy, vol. 15, no. 2, pp. 24–30, mar 2017.

[23] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai
botnet,” in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, Aug. 2017, pp.
1093–1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[24] C. Cimpanu, “Vulnerabilities found in GE anesthesia machines,”
ZDNet.com, Jul. 2019. [Online]. Available: https://www.zdnet.com/
article/vulnerabilities-found-in-ge-anesthesia-machines/

[25] Z. Whittaker, “Flaws in a popular GPS tracker leak real-time locations
and can remotely activate its microphone,” May 2019. [Online].
Available: https://techcrunch.com/2019/05/10/gps-trackers-flaw/

[26] L. O’Donnell, “2 million IoT devices vulnerable to complete
takeover,” Apr. 2019. [Online]. Available: https://threatpost.com/
iot-devices-vulnerable-takeover/144167/

[27] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized action
integrity for trigger-action IoT platforms,” in Proceedings 2018 Network
and Distributed System Security Symposium. Internet Society, 2018.

[28] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
and A. Prakash, “ContexIoT: Towards providing contextual integrity to
appified IoT platforms,” in Proceedings 2017 Network and Distributed
System Security Symposium. Internet Society, 2017.

[29] R. Schuster, V. Shmatikov, and E. Tromer, “Situational access control
in the internet of things,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security - CCS '18.
ACM Press, 2018.

[30] S. Ravidas, A. Lekidis, F. Paci, and N. Zannone, “Access control
in internet-of-things: A survey,” Journal of Network and Computer
Applications, vol. 144, pp. 79–101, oct 2019.

[31] P. Fremantle, B. Aziz, J. Kopecký, and P. Scott, “Federated identity and
access management for the internet of things,” in 2014 International
Workshop on Secure Internet of Things, Sep. 2014, pp. 10–17.

[32] D. Rivera, L. Cruz-Piris, G. Lopez-Civera, E. de la Hoz, and I. Marsa-
Maestre, “Applying an unified access control for iot-based intelligent
agent systems,” in 2015 IEEE 8th international conference on service-
oriented computing and applications (SOCA). IEEE, 2015, pp. 247–
251.

[33] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and G. Ferrari, “Iot-oas: An
oauth-based authorization service architecture for secure services in iot
scenarios,” IEEE sensors journal, vol. 15, no. 2, pp. 1224–1234, 2014.

[34] P. N. Mahalle, B. Anggorojati, N. R. Prasad, R. Prasad et al., “Identity
authentication and capability based access control (iacac) for the internet
of things,” Journal of Cyber Security and Mobility, vol. 1, no. 4, pp.
309–348, 2013.

[35] J. L. Hernández-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta,
“Distributed capability-based access control for the internet of things,”
Journal of Internet Services and Information Security (JISIS), vol. 3, no.
3/4, pp. 1–16, 2013.

[36] L. Seitz, G. Selander, and C. Gehrmann, “Authorization framework for
the internet-of-things,” in 2013 IEEE 14th International Symposium on”
A World of Wireless, Mobile and Multimedia Networks”(WoWMoM).
IEEE, 2013, pp. 1–6.

[37] B. Anggorojati, P. N. Mahalle, N. R. Prasad, and R. Prasad, “Capability-
based access control delegation model on the federated iot network,”
in The 15th International Symposium on Wireless Personal Multimedia
Communications, Sep. 2012, pp. 604–608.

[38] R. Xu, Y. Chen, E. Blasch, and G. Chen, “A federated capability-based
access control mechanism for internet of things (iots),” 2018. [Online].
Available: https://doi.org/10.1117/12.2305619

[39] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security
approach to manage access control in the internet of things,” Mathemat-
ical and Computer Modelling, vol. 58, no. 5-6, pp. 1189–1205, 2013.

[40] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “Iot gateway: Bridg-
ingwireless sensor networks into internet of things,” in 2010 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing, Dec
2010, pp. 347–352.

[41] S. Cirani, G. Ferrari, N. Iotti, and M. Picone, “The IoT hub: a fog node
for seamless management of heterogeneous connected smart objects,”
in 2015 12th Annual IEEE International Conference on Sensing, Com-
munication, and Networking - Workshops (SECON Workshops). IEEE,
jun 2015.

[42] N. Davies, N. Taft, M. Satyanarayanan, S. Clinch, and B. Amos, “Privacy
mediators: Helping iot cross the chasm,” in Proceedings of the 17th
International Workshop on Mobile Computing Systems and Applications
- HotMobile '16, ACM. ACM Press, 2016, pp. 39–44.

[43] A. K. Simpson, F. Roesner, and T. Kohno, “Securing vulnerable
home IoT devices with an in-hub security manager,” in 2017 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). IEEE, mar 2017.

[44] M. Miettinen, P. C. van Oorschot, and A. Sadeghi, “Baseline
functionality for security and control of commodity iot devices
and domain-controlled device lifecycle management,” CoRR, vol.
abs/1808.03071, 2018. [Online]. Available: http://arxiv.org/abs/1808.
03071

[45] R. Ko and J. Mickens, “DeadBolt: Securing iot deployments,” in
Proceedings of the Applied Networking Research Workshop on - ANRW
'18. ACM Press, 2018.

[46] M. Leo, F. Battisti, M. Carli, and A. Neri, “A federated architecture
approach for internet of things security,” in 2014 Euro Med Telco
Conference (EMTC). IEEE, 2014, pp. 1–5.

[47] S. M. R. Islam, M. Hossain, R. Hasan, and T. Q. Duong, “A conceptual
framework for an iot-based health assistant and its authorization model,”
in 2018 IEEE 8th Annual Computing and Communication Workshop and
Conference (CCWC), Jan 2018, pp. 616–621.

[48] G. Schreiber and Y. Raimond, “RDF 1.1 primer,” W3C, W3C Note, Jun.
2014, http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/.

[49] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

[50] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle,
“Towards viable certificate-based authentication for the internet of
things,” in Proceedings of the 2nd ACM workshop on Hot topics on
wireless network security and privacy - HotWiSec '13. ACM Press,
2013.

[51] R.-H. Hsu, J. Lee, T. Q. S. Quek, and J.-C. Chen, “Reconfigurable
security: Edge-computing-based framework for IoT,” IEEE Network,
2018.

