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Abstract—We present F-PKI, an enhancement to the HTTPS
public-key infrastructure (or web PKI) that gives trust flexibility
to both clients and domain owners, and enables certification au-
thorities (CAs) to enforce stronger security measures. In today’s
web PKI, all CAs are equally trusted, and security is defined by
the weakest link. We address this problem by introducing trust
flexibility in two dimensions: with F-PKI, each domain owner
can define a domain policy (specifying, for example, which CAs
are authorized to issue certificates for their domain name) and
each client can set or choose a validation policy based on trust
levels. F-PKI thus supports a property that is sorely needed
in today’s Internet: trust heterogeneity. Different parties can
express different trust preferences while still being able to verify
all certificates. In contrast, today’s web PKI only allows clients
to fully distrust suspicious/misbehaving CAs, which is likely to
cause collateral damage in the form of legitimate certificates being
rejected. Our contribution is to present a system that is backward
compatible, provides sensible security properties to both clients
and domain owners, ensures the verifiability of all certificates,
and prevents downgrade attacks. Furthermore, F-PKI provides
a ground for innovation, as it gives CAs an incentive to deploy
new security measures to attract more customers, without having
these measures undercut by vulnerable CAs.

I. INTRODUCTION

In March 2011, news broke that Comodo—a security
firm operating a certification authority—had been hacked. The
intrusion resulted in the unwarranted issuance of 9 certificates
for several high-profile domain names [12]. A few months
later, DigiNotar suffered a similar attack [32]. These events
led Google to create the Certificate Transparency (CT) frame-
work [40]. About 8 years later, CT is in the final stages of its
deployment [56]. Transparency greatly facilitates the detection
of illegitimate certificates, but there remain the questions of
how to react after misbehavior is observed and how to prevent
misbehavior altogether. Unfortunately, simply revoking the cer-
tificates of vulnerable CAs would have serious consequences:
all the certificates issued by these CAs would become invalid,
rendering countless websites unavailable. An ideal public-key
infrastructure would prevent a vulnerable or misbehaving CA
from jeopardizing the security of the entire system in the
first place, and it would give users and browser vendors an
option to demote CAs without completely distrusting them.
Unfortunately, the definition of trust in traditional PKIs is too
rigid to enable this ideal vision.
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Fig. 1: A dashed line indicates a lower trust and a double line
indicates a higher trust. An arrow indicates certificate issuance
or a certificate sent during a TLS handshake.

Our central observation is that trust is highly heterogeneous
across the world. A PKI that supports trust flexibility would
provide a foundation for domain owners and users/browsers to
express trust preferences, penalize misbehaving or vulnerable
CAs, and reward CAs with strong security measures. The core
challenges in enabling heterogeneous levels of trust in CAs are
to achieve a meaningful overall system behavior with concrete
security properties, ensure global verifiability of all certificates,
and prevent downgrade attacks to lower security levels. An
example to illustrate this is shown in Figure 1. In this example,
user U; trusts CA; more than CA, for issuing certificates for
domain D because CA; supports multi-perspective domain
validation [1], while user Us trusts CA, more than CA;
because CAs is an American CA and D’s TLD is .us. In this
example, U; should be able to express higher trust in CA; than
in CA,, while retaining the ability to use certificates issued by
CAs. A challenge immediately arises: how can such a policy
result in a clear security property for the user? We resolve this
challenge as follows: the user (or browser vendor) may define
a set of CAs as highly trusted for a set of domains, then the
browser obtains assurance that a received certificate does not
conflict with any certificate issued by a highly trusted CA. In
this way, from each user’s perspective, a clear and consistent
security guarantee is provided.

F-PKI (which stands for flexible public-key infrastructure)
introduces trust flexibility in two dimensions: each domain can
set a domain policy and each verifier can set (or choose) a
validation policy using trust levels for CAs. Domain owners
can specify policies in their certificates to restrict the set of
valid certificates for their domain. Clients are then presented
with a comprehensive set of certificates for each domain they
visit and can make informed decisions based on their validation



policy. F-PKI allows these clients to express a preference for
certain CAs. Our new notion of trust is ternary and name-
dependent: every authority may be either untrusted, trusted, or
highly trusted, for each domain name. In our example, user
U; would treat CA; as highly trusted and CA5 as trusted for
domain D. U; would then reject Cs if it conflicts with Cj.
We envision that browser vendors would initially dictate trust
levels, but users could modify these default trust levels as they
please. Once trust levels are defined, a user should only accept
a certificate if it comes with evidence that no highly trusted
CA has issued a conflicting certificate.

Domain owners are given the option to define what con-
stitutes a “conflicting” certificate for their domain, as F-PKI
gives them the ability to specify policies through certificate
extensions. Users then receive and consider all policies signed
by highly trusted CAs. The issuers policy, for example, lists
CAs authorized to issue certificates for a domain name. In
our example, if the owner of D sets such a policy in C,
U; will reject Cy if CAg is not listed as an issuer in Cj.
Giving domain owners the ability to define policies through
certificate extensions would be futile, however, if an attacker
who is able to obtain a bogus certificate could simply hide
those policies. In our example, if U; does not know about the
policies defined in C4, then U; would accept Cy. Therefore,
we introduce a verifiable log server that can provide users
with a view of all certificates and revocation messages relevant
to any given domain name. This new log server, which we
call map server, is meant to complement existing Certificate
Transparency servers.

Main Contributions. = We introduce a new trust model for
the web PKI, which takes into account the heterogeneity of
trust around the world: each user can assign each CA to a
different trust level for each domain name. We present F-
PKI, which allows users to make informed decisions when
validating certificates by considering a global set of certifi-
cates rather than a single certificate chain. F-PKI prevents
downgrade attacks to a less trusted CA, while retaining ver-
ifiability of all certificates. Any domain owner can opt-in to
obtain additional security guarantees simply by requesting a
new certificate with an appropriate X.509 extension, which
preserves backward compatibility to the existing web PKI.
We demonstrate that F-PKI can be realized in practice and
deployed incrementally by upgrading CT log servers or by
introducing a new verifiable log server (called map server). F-
PKI does not require server updates and does not require active
CA participation (beyond support for certificate extensions).
Additionally, F-PKI incentivizes CAs to innovate and offer new
security measures, as it prevents other (vulnerable) CAs from
undercutting these measures. Finally, we present a proof-of-
concept implementation and evaluate it to show that F-PKI is
capable of withstanding realistic workloads and prevent attacks
with low overhead.

II. BACKGROUND: VERIFIABLE LOGGING

Certificate Transparency (CT). The objective of CT is
to log certificates and make them publicly available, so that
misbehavior can be detected. Merkle hash trees facilitate the
audit of log servers. In a Merkle hash tree (MHT, also referred
to as Merkle tree or hash tree), leaves contain data, while
intermediate nodes and the root of the tree contain the hash of

concatenated child nodes. Typically, Merkle trees are binary
so two children are concatenated and hashed to determine the
value of their parent node. By appending new entries to a
Merkle tree in chronological order, CT logs can efficiently
produce presence and consistency proofs. Proving the presence
of a leaf in a Merkle tree whose root is known is efficient: a
number of nodes (logarithmic in the number of leaves in the
tree, assuming a balanced tree) are provided to the verifier
so that they can reconstruct the path to the root. The role of
a consistency proof, on the other hand, is to corroborate the
supposed append-only property of CT logs. Again, a number
of nodes logarithmic in the number of leaves is sufficient to
prove consistency between two versions of a log, assuming
entries are added chronologically.

Absence proofs. The absence of an entry cannot be effi-
ciently proven using a chronological hash tree. Absence proofs,
although not required by CT, are necessary in other contexts.
Laurie and Kasper [39] proposed to support absence proofs
for revocation transparency using a sparse Merkle tree of
intractable size. In such a tree, each output of a hash function
has a distinct leaf; using SHA256, the tree has 22°% leaves.
It is possible to use a sparse Merkle tree in practice (despite
its intractable size), because most leaves are empty and thus
most nodes have the same predictable values. This fact can be
exploited to make sparse Merkle trees efficient with caching
strategies [18]. Trillian [26] is an open-source verifiable data
store, implemented in Go and developed at Google. The white
paper [23] describing the underlying data structures of Trillian
expands upon the idea of sparse Merkle trees. Trillian offers
three modes of operation: (a) verifiable log (equivalent to a CT
log), (b) verifiable map (equivalent to a sparse Merkle tree),
and (c) verifiable log-backed map (which uses a combination
of both tree types).

III. LESSONS LEARNED

Certificate Transparency has been a tremendous success,
but it does not enable proactive security measures; it only
allows detecting misbehavior after the fact. If a CA is com-
promised or malicious, detecting illegitimate certificates within
an unspecified timeframe is not sufficient. The ability to issue
certificates for any domain combined with a man-in-the-middle
attack can be devastating, as both the confidentiality and in-
tegrity of all web communications are threatened. Mechanisms
aimed at preventing such attacks have been proposed in the
past, but deploying them has been a challenge (sometimes with
limited benefits).

HTTP Public Key Pinning (HPKP), which is now dep-
recated by major browsers [25], was designed to fulfill an
objective similar to ours, i.e., to prevent an attacker from
using an illegitimate certificate when another public key is
already bound to the domain name in question. In a nutshell,
HPKP works as follows: A web server sends a pinning policy
to a client through an HTTP header field. The policy may
specify a public key that the client should expect to find in
the server’s certificate. The client then enforces the received
policy for each connection to the domain. The “max-age”
directive specifies the time during which the policy should
be enforced [24]. Unfortunately, HPKP can easily be misused,
by attackers and domain owners themselves [30]. An attacker
can launch a “ransom PKP” attack by pinning a public key,



before asking the owner for a ransom in exchange for a private
key whose public counterpart was pinned during the attack. A
domain owner can also inadvertently commit “HPKP Suicide”
by pinning a public key without knowing the corresponding
private key. Moreover, HPKP is only effective after the first
connection is established and for a limited amount of time. A
number of other mechanisms, such as HSTS [31] and OCSP
Must-Staple [28], suffer from the same problem. Besides,
HSTS only enforces the use of HTTPS, while OCSP stapling
only addresses the revocation problem; neither provides re-
silience against CA compromise. Using a different approach,
CAA records and DANE [22] were proposed to address the
problem of misbehaving CAs, but both rely on DNSSEC,
which requires its own PKI and also suffers from deployment
issues. Moreover, CAA is only intended for CAs: a rogue
CA can completely ignore CAA policies, while our system
is designed to prevent misbehavior by letting clients verify
policies on their own.

The lessons we can learn from these schemes are the
following: (a) The infrastructure itself should be designed to
support domain policies. (b) It should not be possible for a
domain owner to pin a public key to their domain name, unless
they can prove possession of the corresponding private key.
For this reason, our policies will be defined through certificate
extensions. (c) Once a policy is advertised to some clients, it
should be possible to revoke it. (d) PKI improvements should
not require updating all web servers. CT has shown that CAs
are more likely to adopt a new security scheme (if they have
incentives to do so) than individual domain owners. (e) The
security of the web PKI should not rely on trust on first use
(TOFU) or on the security of a separate infrastructure.

Table I shows how F-PKI compares with PKI schemes
and enhancements that were (at least partially) deployed and
supported by browsers. Our comparison is inspired by previous
similar analyses [3], [62]. We discuss more related work in
Section X. Below are the criteria we used in our comparison:

e Prevents attacks: If the web server is replaced by a
malicious server, the scheme will prevent anyone from
connecting to that server.

o Detects global attacks: If the web server is replaced by a
malicious server that everyone sees, the scheme will help
the domain owner detect the attack.

o Detects targeted attacks: If the web server is replaced by
a malicious server that only a small number of people can
see, the scheme will still help the domain owner detect
the attack.

e Built-in revocation: the scheme supports some form of
certificate revocation.

e Unmodified server: web servers do not have to be
modified to support the scheme and still benefit from
additional security guarantees.

o Instant startup: a new web server can use a certificate
and be trusted by clients immediately.

e Instant recovery: if the private key is lost, a new
certificate can immediately be used.

e No out-of-band communication: no side channel is
required to support the scheme. This is only partially
the case for F-PKI because clients must contact a map
server; however, the connection to the map server can
be established via a regular DNS resolver and before the
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TLS session is established. Similarly, DANE and CAA
rely on DNSSEC.

e No log synchronization required: If the scheme uses (or
supports the use of) multiple logs, they do not need to be
synchronized. Although a map server could be replicated
with an appropriate consensus protocol [64], F-PKI can
work with a single map server or several unsynchronized
map servers.

e Supports multiple certificates: several certificates can
be used simultaneously for the same domain.

IV. TRUST MODEL

In this section, we introduce a new, more flexible trust
model for the web PKI. Let the relying party be any entity
(e.g., a client) that uses the public key in a certificate [9]. Our
primary goal is to prevent a CA from attacking a domain if
a certificate has already been issued by another CA that the
relying party trusts more for the domain name in question. To
achieve this goal, we extend the trust model of today’s web
PKI in two ways. First, we introduce a new trust level: each
relying party may consider some CAs more trusted than others,
for all names or a subset thereof. In other words, trust in our
PKI is now ternary and name-dependent. Second, we introduce
new domain policies, which are set by the respective domain
owner and are certified by a CA alongside the certificate. The
relying party considers all domain policies certified by highly
trusted CAs. As opposed to X.509 name constraints [14], all
CAs can still issue certificates for any domain as long as they
don’t interfere with the certificates issued by highly trusted
CAs. The three trust classes of our model are the following:

Untrusted: As in today’s trust model, only a public key that is
part of a valid CA certificate can be used to verify certificate
signatures. Other public keys are untrusted.

Standard trust (non-highly trusted): This corresponds to the
current notion of trust in a CA. Any CA in this trust class can
keep issuing certificates, as in today’s web PKI. However if an
issued certificate violates a policy defined by a highly trusted
CA, it is rejected by the relying party.



Priority trust (highly trusted): This is the new trust level
we introduce. Some CAs may be highly trusted for a set of
names. Relying parties only consider the policies defined by
CAs that they highly trust. This is defined by the following
function:

f(IN): set of authorities highly trusted for name N.

This model could be extended to support more trust classes.
However, the number of trust classes should be kept low
(for usability reasons), while still allowing relying parties to
distinguish between reputable, neutral, and untrustworthy CAs.

A more formal representation of this trust model is pre-
sented in Appendix A.

A. Adversary Model

We assume that the attacker’s capabilities are constrained
as in the Dolev—Yao model [21]. Cryptographic primitives are
unbreakable but their operation is known by the adversary,
so are all public keys, but private keys are only known by
their respective owners. Moreover, the attacker can obtain any
message passing through the network, initiate a communication
with any other entity, and become the receiver of any transmis-
sion. The objective of this attacker is to obtain a certificate for
a victim’s domain, and then perform an impersonation attack
using that certificate and the corresponding private key. The
adversary’s goal is to remain undetected as long as possible if
the attack succeeds. F-PKI is designed to completely prevent
impersonation attacks under a set of assumptions, but even if
the attacker’s capabilities go beyond these assumptions, attacks
can be detected. For this reason, we use two adversary models:
one for prevention and one for detection. Also, because F-PKI
supports trust heterogeneity, our adversary model can only
be defined from the perspective of one client establishing a
connection to a web server with specific domain name. Let NV
be the domain name in question, f(NN) the set of CAs highly
trusted by the client for that name, g(N) the set of non-highly
trusted CAs for N, and M the set of map servers that the
client uses.

Adversary Model 1 (Prevention): The attacker may compro-
mise all CAs in g(N) and a number of map servers such that a
subset of map servers M; C M remains uncompromised and
the map servers in M collectively support all CAs in f(NV).

Adversary Model 2 (Detection): The attacker may compro-
mise all map servers in M and all CAs in f(N) and g(N).

V. OVERVIEW OF F-PKI

We seek to accomplish two main goals. First, browser
vendors and users can define a validation policy, i.e., label
CAs as highly trusted, trusted, and untrusted for each domain
to decide which CAs should be prioritized in case of conflict.
Second, to clearly identify these conflicts, domain owners must
be able to define domain policies. No attacker should then
be able to hide or downgrade these policies. Therefore, it is
necessary to provide clients with a comprehensive view of all
certificates, policies, and revocation messages relevant to the
domain they are contacting. In the current ecosystem, this data
cannot be easily obtained.

We introduce an entity called map server, which provides a
comprehensive view of certificates for its supported set of CAs.

The goal of the map server is to aggregate certificate-related
data in a verifiable manner and provide a meaningful interface
to both clients and domain owners. Map servers use a sparse
Merkle hash tree to effectively produce proofs of presence
or absence. The data provided by map servers complements
the traditional certificate validation procedure. A user gains a
higher degree of assurance that the binding between a public
key and a name is authentic, by checking that there exists no
conflicting certificate for the domain in question.
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Fig. 2: Overview of communication flows before and during
the establishment of an HTTPS connection. The dashed lines
indicate asynchronous communications. Map servers are intro-
duced in this work and described in Section VI-C.

Figure 2 illustrates how the different entities interact. At
a high level, the steps needed to establish a secure HTTPS
connection within F-PKI are the following:

1. The domain owner requests a certificate for www.exam-
ple.com from a certification authority. The certificate sign-
ing request sent to the CA may contain additional domain
policies we introduce in Section VI-B.

2. The map server maintains a complete set of certificates (by
periodically fetching certificates from CT logs, or acting as
a special CT log).

3. The CA returns the certificate to the domain owner. The
certificate should contain the parameters and policies the
domain owner specified in Step 1.

4. The domain owner configures the web server so that it uses
the newly obtained certificate.

5. The browser connects to the web server via HTTPS.

6. As part of the TLS handshake, the browser receives the
certificate, and possibly stapled data periodically fetched
by the web server from the map server (see below).

Two main options allow the client to obtain a com-
prehensive set of certificates for www.example.com and the
corresponding inclusion proof from a map server:

a. The web server fetches the certificate set and inclusion
proof periodically or on-demand and provides it to the
browser by stapling it to the TLS handshake.

b. The browser fetches the certificate set and inclusion proof
from the map server, directly or via DNS (we describe the
DNS technique in more detail in Section VI-E).



VI. F-PKIIN DETAIL

In this section, we describe in detail the operation of
F-PKI as well as the data structures upon which it relies.
We start by discussing validation policies that dictate which
CAs are more trusted than others for a given name. Then
we present policies that domain owners may define through
X.509v3 extensions to opt-in and benefit from the stronger
certificate validation that we propose. Then we describe map
servers as an essential component to support the previously
defined policies and certificate revocation. Finally, we discuss
how certificates and proofs can be delivered from map servers
to clients in an efficient and privacy-preserving way, and we
describe how certificates are validated.

A. Validation Policies (Trust Levels)

Clients can specify which CAs they highly trust. We
envision that such policies would be defined by browser
vendors, but users should be free to modify their default
policies. Validation policies govern the behavior of f(N) (see
Section 1V), which we defined as the set of authorities that
are highly trusted for name N. Below are some examples of
policies browser vendors and/or users may want to define:

CA-Based Policies: Some CAs may be more trusted than
others, regardless of the domain name. This judgment
may be based on past events (such as security incidents),
the validation methods that the CA employs, a reputation
for following best practices, and/or geopolitical factors.
As a concrete example of a reason to trust a CA over oth-
ers, Let’s Encrypt now validates domains from multiple
vantage points or “perspectives” [1] to mitigate routing
attacks on BGP [4], [5].

TLD-Based Policies: CAs operating in a given country or
region (as defined in their certificate) can be designated
as more trusted for certain top-level domains (TLDs). For
example, a policy may state that American CAs are more
trusted for domain names ending in “.us” and “.gov” [35],
while Chinese CAs are more trusted for “.cn”.

Organization Policies: Employees might be required to com-
ply with policies for domains owned by their com-
pany. Online banking or trading platforms, as security-
critical applications, may also provide their customers
with policies they should enforce when connecting to their
websites, specifying which CAs are highly trusted.

We also envision that such policies could be downloaded
by users in the form of a “trust package” provided by or-
ganizations such as the Electronic Frontier Foundation, the
CA/Browser Forum, the Mozilla Foundation, or ICANN.

The fact that different clients could use different validation
policies is part of F-PKI’s design. The consequence of this
design choice is that—when a conflict appears in the form of
a certificate not respecting a policy signed by a CA—some
clients might still be able to establish a connection to the
website (if they do not highly trust the CA that signed the
policy), while others will abandon the connection. In the worst
case where a client highly trusts a malicious or compromised
CA, the security of F-PKI is equivalent to that of the current
web PKI, where a fraudulent certificate issued by a trusted CA
is accepted.

B. Domain Policies

Domain owners can also define policies, in this case
through X.509v3 extensions. There are two reasons for this:
security and backward compatibility. Domain policies allow
domain owners to provide stronger validation of their certifi-
cates, for example, prohibiting wildcard certificates or listing
authorized issuers. Relying parties receive all relevant certifi-
cates through map servers so an attacker with a fraudulent
certificate cannot hide any policy. Domain policies also act as
an opt-in feature, which is required since F-PKI mandates a
stronger certificate validation procedure that could potentially
break validation of existing certificates. Specifically, a certifi-
cate may contain the following attributes:

ISSUERS (Set_Attribute): set of public keys (CAs) that may
be used to verify signatures on this domain’s certificates.
If this extension is not present, then all the CAs the client
trusts are authorized to issue certificates.

SUBDOMAINS (Set_Attribute): set of subdomain names for
which certificates can be issued. Ranges of subdomains
can be covered with wildcards (e.g., *.sub.example.com).
If this extension is not present, then all subdomain names
are authorized.

WILDCARD_FORBIDDEN (Bool_Attribute): prohibits the use
of wildcard certificates for this domain.

MAX_LIFETIME (Max_Attribute): max. certificate lifetime.

Each attribute is marked as either inherited or non-
inherited. An inherited attribute will be passed on to sub-
domains. Non-defined, non-inherited attributes default to the
browser policy.

Domain owners should use a consistent set of policies and
certificates. In other words, domain owners should make sure
that they do not generate themselves any policy violations, in
order to guarantee that their website remains available to all
clients (i.e., regardless of which CA(s) the clients highly trust).
Policy violations should only be observed when a fraudulent
certificate is issued by a malicious or compromised CA. To
let domain owners change their policies over time without
disrupting legitimate connections to their website, domain
policies can be revoked through map servers (certificate and
policy revocation are discussed in Section VI-C).

Multiple certificates for the same domain. Although we
presented F-PKI as an alternative to multi-signed certificates
(to increase resilience against CA compromise), the two
approaches can be combined. A domain owner can obtain
certificates from several CAs, as long as the certificates respect
the domain policies. Ideally, policies and other parameters
defined in the certificates would be identical, but this is impos-
sible to guarantee if the certificates are issued independently.
Therefore, clients must consider the strictest of all policies.

Policy Resolution. Clients resolve domain policies using
their default browser policy and a set of X.509v3 policy
extensions. The strictest policy is calculated by iteratively
applying a fold operation on each attribute of the policy.
Bool_Attributes are combined through logical conjunction
(Bo A By), Max_Attributes are combined by taking the mini-
mum value (min(My, My)), and Set_Attributes are combined
through intersection (Sp N S1).



C. Verifiable Data Structures in Map Servers

We introduce an entity called map server that provides
a mapping from domain names to a set of certificates and
revocations for this domain and parent domains. Each map
server supports a set of CAs and keeps track of certificates
issued by these CAs by leveraging the existing CT infras-
tructure and log data. The efficient audit of map servers is
enabled by sparse Merkle hash trees, which we extend with
nested trees to support hierarchical naming (similar to DNS).
To the best of our knowledge, this is the first proposal for
a verifiable data structure that provides a complete view of
all certificate-related data of a domain and its parent domains
while supporting efficient proofs of presence and absence of
such data. Figure 3 gives an overview of the data structures
used by a map server.

Comparison to CT logs. Even with Certificate Trans-
parency, it is not possible to query a log server to directly
verify that no certificate has been illegitimately issued for a
given domain name. Instead, domain owners must rely on
monitors, which keep entire copies of several logs. Only a few
monitors exist at the moment. Li et al. [43] recently reported
that none of the active third-party monitors they found could
guarantee to return a complete set of certificates. The critical
interface missing from log servers at the moment is thus one
for fetching all valid (i.e., unexpired) certificates for a given
domain name. It would seem natural to extend existing CT log
servers to support this operation, but unreasonable to expect
all log servers to be updated simultaneously.

Hierarchical Naming. Map servers distinguish between ef-
fective second-level domains (e2LD) [53] (i.e., domains where
the parent domain is a public suffix [50]) and descendants
of e2LDs (hereinafter subdomains). The remaining domains—
parent domains of e2LLDs and domains without a valid TLD—
are invalid and the map server rejects certificates for such
domains (e.g., ac.jp or test.invalid). e2LD entries are stored
in a single sparse MHT. An advantage of such a hierarchy
over a label-based hierarchy such as DNSSEC is that certifi-
cates for e2LLDs can be stored at a lower depth (e.g., exam-
ple.blogspot.co.uk has depth 0 instead of 3 in DNSSEC), which
reduces the proof size. The entries of subdomains are stored in
nested sparse MHTs located below the parent domain’s entry.
The data structure for subdomains is the same as for the e2LDs,
except that the key used for the index calculation only includes
the name of the subdomain (without the parent domain). Since
the Merkle proof of a subdomain contains all parent-domain
entries, policies issued by parent domain owners are included
in the subdomain proof. A parent domain owner can thus
restrict CAs from issuing certificates for its subdomains or
allow certificates only for certain subdomains. The reason map
servers reject entries of public suffixes is that a certificate for a
public suffix would enforce policies specified in the certificate
for all e2LLD domains using this public suffix. An algorithm
for constructing the map server as described above is presented
in Appendix B. The map server is also pruned periodically to
remove expired certificates.

Entry Format. The map server creates an entry for each
domain with at least one certificate (valid or revoked) or one
active subdomain. The entry consists of the certificates and
revocation messages of both the domain (example.com) and
the corresponding wildcard (*.example.com), and the root of

Content Type Domain(s)

Certificates  list<X.509 certificate > example.com

Revocations  list<revocation message> example.com
Certificates  list<X.509 certificate > * example.com
Revocations  list<revocation message>  *.example.com
Tree Root cryptographic hash [subdomains]

TABLE II: The map entry for example.com.

the subdomain MHT, as shown in Table II. Each certificate
might contain policies in the form of X.509v3 extensions. The
wire format of an entry is its ASN.1 DER encoding [33] where
certificates, revocation messages, and tree roots are encoded as
octet strings or sequences of octet strings.

Revocations. An end-entity certificate can be revoked either
by a CA in the certification path (using the private key that
corresponds to the CA certificate) or by the domain owner
(using the private key that corresponds to the certificate itself).
A revocation message for certificate C, revoked using a private
key k, has the form Rc = Sig,(H(C),revoke). Such a
certificate revocation message can either be pushed to map
servers by the domain owner or sent to the issuing CA which
forwards the message to map servers. A policy can be nullified
by revoking the certificate in which it was defined. It is possible
to revoke a policy but not the certificate in which it is defined.
This option will help domain owners change their domain
policies over time without disrupting legitimate connections
that still rely on a previous certificate. It will also help them
recover from erroneously defined policies.

Sparse MHT as Key-Value Store. A sparse Merkle tree, as
shown in Fig. 3, provides a mapping from keys (domains) to
values (entries). Each leaf corresponds to a key-value pair. The
leaf’s position is determined by the hash of the key, leading
to 2256 possible leaves for a hash output length of 256 bits.
The hash of a leaf is the hash of the concatenation of a fixed
leaf prefix (e.g., 0x00) and the DER representation of the
corresponding entry. The hash of an intermediate node is the
hash of the concatenation of a fixed node prefix (e.g., 0x01)
and the hash of the left and right child.

The path from the root to a leaf is defined as follows: At
level ¢, if the 7th bit of the hash is O, the left child is selected,
otherwise the right child is selected. Hence paths have a fixed
length of 256 and the proof that a certain key with a given
value exists consists of the 256 hashes of siblings that are
necessary to construct the hash chain to the signed tree root.

The non-existence of a key is proven by showing that the
value at the position of the hash of the key is the default
value (indicating an empty leaf) which is distinct from any
real value. Such a proof is large (256 - 256 bits = 8kB) but
can be compressed since the majority of the leaves in a sparse
tree are empty. The idea of the compression is that hash values
for subtrees where all leaves are empty can independently be
(pre-)computed if the default value and the level are known.
The map server then omits all values that can independently
be computed when transmitting a proof. The sparse MHT in
Fig. 3 with the public suffixes com and ac.jp stores entries for
the e2LDs example.com and u-tokyo.ac.jp.
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Fig. 3: Sparse Merkle tree with the corresponding consistency tree and a subdomain tree. Every leaf in the sparse Merkle hash
tree corresponds to an entry in a map. Every effective second-level domain has a distinct entry in the main tree. The index
of each entry in the tree is determined using the hash of the domain name. This construction can be used in practice because
building the entire tree is not necessary to generate proofs: most nodes have default values.

Reaping the Benefits of Sparse MHTs. Since each e2L.LD
has a separate tree for its subdomains, adding subdomains
only increases the size of the given subtree and thus does not
affect proof sizes of other domains. In a regular MHT, proofs
of presence have a size of [log,L] where L is the number
of leaves (unless otherwise stated, we express proof sizes in
number of hash values required to verify the proof). A proof of
absence, however, is up to twice as large as it requires inclusion
proofs of the previous and next leaf entry. In sparse MHTs,
proofs of presence and absence have the same size, since the
absence of a domain can be verified with a single inclusion
proof. In a sparse MHT, the proof size depends on the structure
of the sparse MHT. Only non-default nodes are considered
part of the proof since default nodes can be pre-calculated
and stored. If the non-empty leaves are uniformly distributed,
the average proof size is minimized and the same as in a
regular MHT [log, L]. In sparse MHTs, adding, updating, and
removing entries require changing [log,L] node values on
average since each on-path node must be updated.

Proving Consistency over Time. In addition to the sparse
e2LLD MHT, the map server maintains a consistency MHT
with chronologically ordered signed map heads (SMH) com-
ing from the sparse e2LD MHT, as shown in Fig. 3. The
consistency tree can prove that the modifications between log
revisions are correct, and prove that the log did not include
non-existing certificates or exclude existing certificates. In
other words, the signed map head represents the map at a given
point in time, while the signed consistency head represents the
entire history of the map.

D. Selection of Map Servers

Each client must have at least a set of map servers such
that each highly trusted CA is supported by a quorum of
servers in this set. Typically, each map server would support

all major CAs and the quorum would be equal to 1 (especially
during the initial deployment of F-PKI). Therefore, clients
would only need proofs from a small set of map servers.
It is recommended, however, that the set of map servers be
slightly larger than what is required by the quorum to permit
failover in case a map server is unreachable. When different
map servers are contacted, if they give different replies, the
client considers all policies signed by highly trusted CAs, as
specified in Algorithm 1.

For validation policies where a single set of CAs is highly
trusted for all domain names, only one set of map servers is
needed. For more complex validation policies, a natural way
to define those policies as well as the map servers to use in
each case is to use a list of tuples of the following form:

(N1, f(N1), My),
(Na, f(N2), Ma),

where N; is a set of domain names, f(N7) is the set of highly
trusted CAs for N7, M is the set of map servers to use for
Ny, and M7 UMy U--- = M (see Section IV-A).

An algorithm to select an appropriate set of servers auto-
matically is presented in Appendix C. The algorithm performs
the selection by solving a set multicover problem using a
greedy approach. Using this algorithm with the set of all map
servers M, the user can change validation policies without
having to manually select the set of map servers to use.

Although F-PKI is designed to be flexible and expressive,
we expect this process to be straightforward, based on a fairly
low number of map servers and handled by browser (or OS)
vendors rather than end users in most cases (i.e., unless the
user wishes to change their default settings).



E. Proof Delivery

Stapling. The first approach for delivering proofs to clients
is to have the web server embed them into a TLS extension,
similarly to how revocation messages can be delivered with
OCSP stapling. This technique does not cause privacy issues
but requires that servers be updated to fetch proofs related to
their own name periodically from a set of map servers.

Fetching via DNS. In case the web server does not
embed relevant proofs from a map server in its response,
the client should fetch such proofs on its own. Instead of
directly contacting map servers, the client can fetch log data
through DNS [41], [61]. For example, to request a proof
from a map server mapserverl.net for the domain name
www.example.com, the client can send a recursive DNS query
for www.example.com.mapserverl.net to its DNS resolver. The
DNS resolver finds the IP address of the map server and
forwards the client’s query to that address. Acting as a name
server, the map server replies with one or more TXT records'
containing the entry of www.example.com. Finally, the resolver
returns the records to the client. The advantages of using DNS
for the purpose of delivering proofs from map servers to clients
are numerous:

Decentralization: The decentralized and hierarchical nature
of DNS falls in line with our objective of avoiding
reliance on a global authority.

Caching: Records can be cached at several levels, for a
configurable amount of time (TTL), to minimize latency.

Privacy: Although DNS is not in itself a privacy-preserving
system, the resolver is always aware of the domain names
the client is trying to reach, so the privacy implications of
asking a public DNS resolver for extra information about
those names are limited.

Timeliness: DNS resolution occurs before the TLS connection
is established (to obtain the web server’s IP address),
which minimizes perceived page-load time increase.

DNS already supports the delivery of certificate-related
data (e.g., through CAA, CERT, and TLSA records).
DANE [22], in particular, binds certificates to domain names
directly in the name system with the objective of solving the
issues caused by rogue CAs. Unfortunately, DANE relies upon
DNSSEC for protecting name-to-certificate bindings, and is
not widely supported by browsers at the moment. In contrast,
F-PKI does not require an authenticated name system such
as DNSSEC, because the cryptographic objects we transport
through DNS are authenticated independently, i.e., users know
the public keys of their trusted map servers.

One concern over using DNS for transporting crypto-
graphic data is that the size of messages sent over UDP
is limited by the DNS standard. However, RFC 6891 [19]
describes extension mechanisms to enable using UDP for
messages with sizes beyond the limits of traditional DNS. The
RFC suggests that requestors try initially selecting a maximum
payload size of 4096 bytes, which is sufficient to contain a
cryptographic proof (such as the ones produced by Trillian)
in many cases. If necessary, falling back to TCP enables

'We employ TXT records in this design, as well as in our proof-of-
concept implementation, in order for F-PKI to be compatible with existing
infrastructure, and leave the introduction of a standardized resource record
type dedicated to our purposes as potential future work.

the transport of larger packet sizes, at the price of increased
latency.

Alternative Delivery Methods. Directly fetching a proof
about a specific domain from a map server has privacy implica-
tions, but there might be situations where the user is willing to
send requests directly to a map server. In particular, if the user
relies on a public DNS server (such as CloudFlare’s 1.1.1.1
or Google’s 8.8.8.8), and if one of the company operating
the name server also operates map servers, then the privacy
implications of fetching proofs directly are limited (assuming
a secure channel is established between the client and the
map server). Another approach would be to use a middlebox
(instead of updating the web server) to staple proofs by having
the middlebox detect new connections and append relevant
data to the TLS handshake (which is in plain text) [58], [42].

FE. Certificate Validation

The certificate provided by the web server during the TLS
handshake is validated by the client using the normal validation
procedure and additional data provided by the map server(s),
which may include a list of other certificates for the same
domain, a list of certificates for parent domains, and a list of
revocations for both. The client will then check revocations,
resolve the domain’s policy (considering only policies defined
by highly trusted CAs), and verify that the certificate respects
the resolved domain policy.

Algorithm 1 shows the certificate validation logic of F-PKI
in pseudocode. The validation function takes six inputs: the
domain name of the web server, the function f representing
CAs highly trusted for that name, the certificate received
during the TLS handshake, other certificates for the same
domain that the map server may have returned in the previous
step, a set of revocations for the above certificates, and the
browser’s default policy. The algorithm starts by verifying that
the legacy X.509 validation procedure succeeds and that the
certificate is not revoked. Then, invalid and revoked certificates
are removed from the list of additional certificates. Certificates
issued by non-highly trusted CAs are also removed from the
list. We then iterate through these certificates and resolve the
domain’s policy, considering the strictest of all policies in the
received certificate and the filtered list of additional certificates.
Finally, the algorithm checks that all domain policies are
respected.

VII. SECURITY ANALYSIS

F-PKI provides strictly stronger security guarantees than
today’s web PKI since any certificate rejected by a browser
today would also be rejected by F-PKI. The simplicity of our
certificate validation algorithm (Algorithm 1) allows a direct
demonstration of this property. The first step of that algorithm
is to run the legacy certificate validation procedure; if it fails,
the algorithm returns immediately. This is true even if all
map servers are malicious and colluding. We now discuss the
additional security guarantees of F-PKI and potential attack
vectors.

In the analysis below, we consider the perspective of a user
with browser B, which uses a set of map servers that do not
necessarily support all CAs but periodically fetch the data from
all the CT log servers supported by browser B.



Algorithm 1: Certificate Validation

1 n : domain name for which the certificate is validated

2 f(n) : CAs highly trusted for n (see Section IV)

3 (' : certificate received during TLS connection

4 Cig : list of certificates for n and parent domains

5 R : dictionary (key: certificate hash; value: revocations)

6 > Cligy and R come from map server(s)
7 Phrowser: default browser policy

8 function VALIDATE(n, f, C, Ciy, R)

9 if not legacyValid(C)

10 L return false > legacy validation failed
1 for r € R[hash(C)] do

12 if r.isValid()

13 L return false > certificate is revoked
14 for ¢ € Ciisr do > filter certificates
15 if not (legacyValid(c) and signedBy(c, f(n)))

16 L remove ¢ from Cj;; continue

17 for r € R[hash(c)] do > check revocations
18 if r.isValid()

19 L remove ¢ from Cj;; break

20 D < Prrowser > start with default browser policy
21 for c € C U Ciy do

2 p’ < c.policy() > embedded policy
23 for a € All_Attributes do

24 if p’[a).isInherited() or n € c.names()

25 if a € Bool_Attributes

2 | pla] « (pla] &5 p'fa])

27 if a € Max_Attributes

2 | pla] « min(p[a],p’[a])

29 if a € Set_Attributes

30 | pla] < (pla] N p'[a])

31 if ViolatesPolicy(C, p)
32 | return false

> issuers, wildcard, ...

33 return true

A. Attack Prevention

Recall that we presented two adversary models in Sec-
tion IV-A: one for attack prevention and one for attack detec-
tion. We start by analyzing the security guarantees that F-PKI
provides to a client under the assumption that highly trusted
CAs and a subset of map servers are honest and behaving
correctly (i.e., Adversary Model 1).

If the client considers CA1 highly trusted for name N, and
CA1 has issued a certificate Cy (which is valid) for N, then
the client will not accept any certificate that does not comply
with the policies in C1.

The above statement holds because, by assumptions of
Adversary Model 1, highly trusted CAs are honest and at least
one map server M in the set of map servers that the clients
uses supports CA;. Therefore, the attacker can obtain a valid
certificate from a non-highly trusted CA but cannot hide C}
from the client because M7 (which is honest by assumption)
will show the certificate to the client. Also, the attacker cannot
define illegitimate policies for N because only the policies
defined by highly trusted are considered by the client.

B. Attack Detection (CA Misbehavior)

In Adversary Model 2, we relaxed our assumptions to
include the possibility that all CAs and all map servers are
malicious. The illegitimate issuance of a certificate by a highly
trusted CA cannot be prevented, but it can be detected.

If a client considers CAy highly trusted for name N, and
CAq has illegitimately issued a certificate for N, which is used
in an attack, then the domain owner will be able to detect the
illegitimate certificate.

CT already allows detecting CA misbehavior. Given that
F-PKI is designed to complement the current web PKI, the
detection of such attacks is naturally possible. But map servers
facilitate the detection of CA misbehavior as they provide a
more powerful API than CT: all the certificates related to a
given domain can be obtained with a single query, whereas CT
relies on external auditors that keep entire log copies to detect
fraudulent certificates. These auditors must in turn be trusted
to perform this task correctly and, unlike map servers, do not
use verifiable data structures. The enhanced transparency that
F-PKI provides can then be leveraged by clients and browser
vendors to select their highly trusted CAs.

C. Dealing with Malicious Log Servers

Submitting every new certificate to several CT logs is
already a requirement. Chrome, for example, requires that each
certificate come with evidence that it was submitted to at
least one Google-operated log and one non-Google-operated
log [27]. By ensuring that certificates are logged by a large
and diverse set of log servers, misbehavior can be tolerated.
Only if several log servers are compromised and colluding can
they hide the existence of certificates and policies from map
Servers.

Additionally, violation of the append-only property can
be efficiently detected by external auditors using the MHT’s
properties. Auditors can also verify that log servers include
certificates after the maximum merge delay (MMD). F-PKI
favors log servers with small MMDs since this allows the map
servers to have an up-to-date view of the certificate ecosystem.
Furthermore, a gossip protocol [11], [51] can be used to detect
a split-view attack in which a log server would consistently
provide different views of its MHT to different clients.

D. Dealing with Malicious Map Servers

Each map server returns a single proof for a given
(sub)domain including the certificates and possibly revocations
of all parent domains. If the user-selected set of trusted map
servers provide a complete set of certificates and revocation
messages, the user can use the provided domain policies to
verify the validity of a certificate. A malicious map server,
however, can hide certificates and revocation messages by not
including them into its MHTSs or providing different views to
clients.

A malicious map server could circumvent policies by
removing the corresponding certificates. The map server could,
for example, remove a parent domain policy that restricts
subdomains for which certificates can be issued. However, this
attack is only useful if the map server colludes with a CA.



There are two mitigations to reduce the impact of malicious
map servers. The first mitigation is the client’s ability to spec-
ify which map servers are trusted and how many trusted map
servers need to support each highly trusted CA (quorum). This
protects against attackers that compromise up to quorum — 1
selected map servers. The second mitigation is, as for CT
log servers, that the audit of map servers is facilitated by
Merkle hash trees. External auditors can verify the correctness
of a map server’s operation, such as the append-only property,
completeness with regard to supported log servers, and update
interval. As a last line of defense, a gossip protocol can also
be used to verify the consistency of map servers.

E. False Positives

Some certificates that would be valid today might be
rejected in F-PKI. This stronger certificate validation may raise
concerns over false positives. We stress, however, that domain
owners must opt-in (by obtaining a certificate with appropriate
certificate extensions from a CA) to reap the benefits of F-PKI.
A domain owner may forgo strict domain policies to prioritize
availability over security. Moreover, Algorithm 1 states that
only policies signed by highly trusted CAs are considered
(the other certificates are filtered before policy resolution).
Therefore, an attacker who compromises a CA that is not
highly trusted by the victim cannot falsely define a policy.
An attacker who manages to obtain a certificate from a CA
that is highly trusted by some clients may cause a legitimate
certificate to be rejected by those clients, but this will become
evident through logging. The incriminated certificate will then
be revoked and the CA in question will suffer the consequences
of the security breach. F-PKI thus prioritizes security over
availability in case a highly trusted CA is compromised.

FE. Denial-of-Service Vectors

Some attacks do not threaten our main security guarantees
but could impede the availability of the system. For example,
an attacker can launch a resource-exhaustion attack by inject-
ing certificates for e2L.Ds such that the hash of the injected
domain and target domain share the same prefix. This would
increase the proof size of the target domain in the sparse
MHT. The impact of such attacks is very low due to the
complexity of finding alternative inputs, whose hash partially
matches the attacked domain’s hash. Mitigations for these
attacks are including an unpredictable, regularly updated value
in the sparse MHT’s hash calculation or using verifiable data
structures with fixed proof sizes, such as sorted-list MHTs.
Denial-of-Service attacks and their mitigations are explained
in more detail in Appendix D.

VIII. REALIZATION IN PRACTICE

We implemented a map server prototype that manages
sparse MHTs using Trillian [26] and distributes proofs to
clients via DNS using CoreDNS [15], a DNS server imple-
mentation that supports plugins. Additionally, we implemented
a browser extension that verifies certificates used in the TLS
handshake of every website and blocks connections using non-
policy compliant certificates. The web extension is imple-
mented using the Mozilla WebExtensions API [48], a cross-
platform JavaScript API for browser extensions. A concrete
implementation would staple proofs using a TLS extension
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analogous to OCSP stapling. For our performance evaluation,
we simulate stapling by encoding map server proofs within
X.509 extensions. We will make our code base publicly avail-
able. In this section, we present two concrete use cases based
on domain validation procedures and organization policies. We
also evaluate the overhead of our system and the performance
of our proof-of-concept implementation. To do so, we created a
map server, added over one million certificates from a Google
operated CT log (Argon 2019), and evaluated the number of
(unique) certificates, proof sizes, and processing times on the
map server. Finally, we discuss deployment of map servers in
the real world.

A. Use Case 1: Multi-Perspective Validation

We first present a use case that demonstrates how F-
PKI can enable security innovation in the CA ecosystem.
In particular, an attacker must not be able to downgrade a
certificate issued by a highly-trusted CA to a certificate issued
by a non-highly trusted CA. In today’s ecosystem, CAs that
aim to innovate via stronger methods for domain validation are
limited in their ability to provide security benefits to clients
and domain owners, because any other vulnerable CA can issue
certificates for the same domains.

We demonstrate that our prototype can prevent attacks
and favor non-vulnerable CAs, with minimal software and
operational changes. We consider a scenario where the attacker
wants to perform a man-in-the-middle attack and obtains a
bogus certificate from a regular CA through a BGP hijacking
attack during the domain validation to trick the CA into issuing
the certificate [4]. We simulate this attack by creating a CA
certificate, labeling it as non-highly trusted, and signing the
bogus certificate with our newly created CA. In order to protect
against such attacks, “multi-perspective domain validation”
prevents attackers that do not have the capability to perform
BGP hijacking attacks on all vantage points simultaneously
from obtaining an illegitimate certificate. Let’s Encrypt, for
example, has been supporting multi-perspective domain vali-
dation since February 2020 [1], [5].

We obtained a certificate from Let’s Encrypt for the domain
under attack. Because Let’s Encrypt does not support custom
certificate extensions, we defined as our default browser policy
the ISSUERS attribute to only contain the public keys of
Let’s Encrypt root CA certificates. Our legitimate certificate
was automatically submitted to CT logs by Let’s Encrypt and
appended to the corresponding trees within a day. We defined
Let’s Encrypt as a highly trusted CA, and made sure the two
certificates were added to our map server. We then installed our
browser extension, added our prototype map server as a trusted
map server, and evaluated the man-in-the-middle attack. Before
connecting to the attacker’s website, our browser extension
now sees in the reply from the map server that the legitimate
certificate is signed by a highly trusted CA (Let’s Encrypt)
and does not allow any certificate with a different public key
to be considered valid. Our browser extension thus blocks the
connection to the attacker’s server.

Multi-perspective validation is just one example of a reason
to trust a CA over others. The assessment of a CA’s trustwor-
thiness [29], [36] can based on many other criteria, such as
compliance to IETF standards [13] and CA/Browser Forum
requirements [7].



B. Use Case 2: Organization Policies

Another situation in which F-PKI would prove particularly
beneficial is the following. Consider an organization with high
security requirements (e.g., a government agency) operating
numerous websites and web services. Assume that this orga-
nization relies on a single CA to obtain its certificates. The
employees of that organization (and other clients relying on
it) could take advantage of F-PKI to avoid falling victim to a
MITM attack launched by a foreign state that controls a CA,
for example.

On the server side, this only requires defining an ISSUERS
policy that contains the CA in question (through a certificate
extension). On the client side, there are multiple ways to
benefit from F-PKI in this situation. The most obvious is for
clients to use a browser that supports F-PKI and make sure that
the CA in question is highly trusted (or install a “trust package”
in which the CA is marked as highly trusted). But there are
other options that clients could use if F-PKI is not supported by
major browsers. First, the organization can develop a browser
plugin. Second, some organizations recommend using their
own custom “secure browser” [54], [16]; F-PKI could be built
into such a browser with the appropriate validation policies.
Finally, if the organization has an app that uses an API over
HTTPS, then the app can be configured to support F-PKI for
a more secure communication with the APIL

C. Performance Evaluation

We now evaluate four performance metrics: (a) latency, (b)
proof size, (c) proof generation time, and (d) typical number
of subdomains per domain. We used three certificate datasets
for this evaluation:

e Alexa Top 1K: We scraped ~700 certificates from the
1000 websites of the Alexa top 1K list. We only used
this dataset in our latency evaluation to get a relatively
small set of commonly used certificates that our test client
could sequentially visit.

e Single CT Log: We fetched ~1 million certificates from
a single log server (Google Argon 2019). We used this
dataset to analyze the effects of increasing the total
number of certificates on proof generation (time and size),
and to evaluate the scalability of our proof-of-concept
implementation of a map server.

e All Google-Operated Logs: We fetched ~20 million
certificates from all Google-operated log server. We used
this dataset to infer the typical number of subdomains of
each domain.

Latency. The metric of interest for us here is the time to first
byte (TTFB), which is the duration from the moment when the
browser initiates a page request (including the DNS lookup)
to the moment when the browser starts receiving HTTP data.
We define the TTFB overhead as the additional time it takes
before receiving the first byte when using F-PKI (compared to
a regular HTTPS request). Our evaluation shows that the DNS
and stapling approaches typically have a TTFB overhead of
less than 1 ms and 10 ms, respectively. For this evaluation, we
set up a client in our university network and server on Digital
Ocean [20]. The server scraped the TLS certificates from the
1000 most popular domains that enabled HTTPS (resulting
in ~700 certificates) and added the certificates to a local map

11

1.01

0.8 1

0.6 1 !

CDF

044 ;

1 Overhead (stapling)
=i Proof validation
.. Proof extraction

027/

0.0 + T T T r
0 20 40 60 80 100
Time in ms

(a) Stapling approach: the proof is extracted from a TLS extension.
Overhead is the addition of extraction, validation, and extra latency
incurred by our implementation as a browser extension.
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(b) DNS approach: the proof is requested via DNS from the map

server. Typical case: Complete DNS resolution happens in parallel.

Worst case: IP address of the web server is cached but not the proof.

Fig. 4: Latency incurred by F-PKI operations. Overhead refers
to the increase in TTFB, i.e., from the moment the user
requests a website to the moment it starts loading.

server. The client installed the browser plugin and sequentially
visited these domains.

Stapling.  Figure 4a shows the TTFB overhead using the
stapling approach. The processing time for validating the proof
has a median of ~10ms. However, the use of a JavaScript-
based web extension, instead of natively integrating the valida-
tion in the browser, leads to a TTFB increase of around 50 ms.
A native browser implementation would reduce the overhead
of both the stapling and DNS methods.

DNS. To evaluate the DNS approach, we used the CoreDNS
plugin to serve map server proofs as DNS responses, as
described in Section VI-E. We measured the performance
with and without locally caching the IP address of the web
server. Figure 4b shows that fetching a newly generated proof
from the map server typically takes less than 50ms, while
validating it typically takes less than 10ms. In the typical
case where neither IP addresses nor proofs are cached, there
is almost no impact on user experience (< 1ms overhead in
over 95% of cases). The overhead is negligible since the proof
retrieval and validation, which are initiated in parallel when
the user requests a website, are often faster than the browser’s
regular workflow, i.e., DNS—TCP/QUIC—TLS—HTTP. For



the second case, the IP address is cached in the DNS resolver
while the proof from the map server must be fetched. Even in
this worst case, a median overhead of ~20ms means F-PKI
overhead is typically not noticeable.

Proof Size. Figure 5 shows the average proof size (including
the inclusion proof) after DEFLATE compression and the
size of the hash chains required to prove inclusion or non-
inclusion in the Merkle hash trees. We see that the inclusion
proofs consisting of MHT hash chains contribute a small, but
incompressible part to the proof. As expected, the proof size
grows logarithmically with the number of certificates/proofs.
In the DNS proof retrieval method, we used the EDNS(0)
extension to increase the DNS payload size (DNS over TCP,
TLS, or HTTPS should be used for larger proofs).
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Fig. 5: Average sizes of a complete proof (including the set of
certificates, compressed) and an inclusion proof.

T T
0 200000

Proof Generation. Figure 6 shows that the average proof
generation time of a map server increases linearly with the
number of subdomains due to an additional lookup in a sparse
MHT per subdomain. The generation time is almost constant
given the number of certificates added to the map server. The
increase in generation time for all depths is due to an increase
in the domain name depth of certificates fetched from the
CT log. The virtual machine hosting the map server has 4
cores and 8 GB RAM. The proof-of-concept implementation
creates a fully functional Trillian sparse MHT for each domain
with subdomains, even if there is only a single subdomain.
In a leaner implementation, MHTs for subdomains with few
certificates could be generated on-the-fly. It is important to
note that within the maximum merge delay (MMD) of a map
server, the map server can precompute the proofs, which can
already be cached in DNS resolvers.
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Fig. 6: The average processing time of a map server for
generating proofs given the total number of certificates added
to the map server and the number of subdomains.
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Number of Subdomains. We fetched certificates from all
Google-operated CT logs to analyze the overhead at map
servers for generating proofs. Fetching from all Google-
operated CT log servers would (eventually) provide us with
all Chrome-accepted certificates since Chrome’s CT policy
mandates that each certificate be logged by at least one Google-
operated log server. The hierarchy of F-PKI requires one
additional MHT inclusion proof per subdomain before the
public suffix (e.g., .com or .co.uk). We fetched over 20 million
certificates and stored the number of subdomains for the
certificate’s subject common name (CN) or a subject alternative
name (SAN) if the subject common name was empty. Our
analysis shows that most certificates (about 78%) have just
one or two subdomain levels, which limits database access to
at most two queries for fetching an entry’s proof (assuming
cached public suffix entries) and three queries for inserting
an entry. Virtually all certificates have less than 6 subdomain
levels.

D. Deployment

F-PKI does not require server updates and only requires
CAs to support an additional certificate extension. This facili-
tates incremental deployment, which is crucial for the success
of a proposed infrastructure. F-PKI could be initially deployed
with a single map server and then grow to have clients query a
larger quorum of map servers. However, for scalability reasons
and to distribute the workload, it is possible—and would be
sensible—to deploy separate map servers for different subsets
of the DNS namespace (for example, having a map server
for each public suffix or TLD). Our analysis of certificates
contained in Google-operated CT logs indicates that the .com
TLD appears in 54.77% of all certificates, whereas the second
most common TLD (.net) only appears in 7.29% of certificates.
Therefore, the .com TLD should further be split to more evenly
spread the workload across map servers. Moreover, as we noted
in Section VI-D, different map servers can support different
sets of CAs.

In an initial phase of deployment, we also envision that
map servers will serve as verifiable monitors, without requir-
ing clients to contact them directly and without enforcing
domain policies. Indeed, CT monitors have proved to be
unreliable [43]. Making monitors verifiable with the data
structures presented for map server would bring even more
transparency to the current ecosystem, before F-PKI is fully
operational. In later stages, domain owners would start defining
policies, before browsers enforce them.

IX. DISCUSSION

In this section, we discuss issues that relate to how F-PKI
would be used, deployed, and configured in practice.

A. Soft Fail vs. Hard Fail

F-PKI clients must obtain a global view of certificates
for a domain from map servers. While this is a conceptual
change from how certificates are validated today, such a check
is necessary for enforcing strong security policies. Revoca-
tion has identical requirements: revocation messages must be
obtained—periodically or in real time—from a third party.
Revocation messages can be fetched by the client or stapled



to the connection by the server. The same can be said of
data coming from our map servers. This is inevitable and
may come at odds with availability, especially in a world
where web servers are rarely updated to support new security
enhancements.

Revocation mechanisms (such as OCSP) are often imple-
mented by browsers in a soft-fail mode: if no revocation status
can be obtained, the browser assumes that the certificate is
not revoked. Adam Langley compares soft-fail checks to “a
seat-belt that snaps when you crash” [37]. With a soft-fail
approach, previously received certificates should be cached
(until expired) so that the policies they contain cannot be
downgraded by an attacker capable of blocking connections
to map servers. This approach is similar to HSTS [31], OCSP
Must-Staple [28], Expect-CT [55], and HPKP [49], in that
extra policies must be enforced after the first connection. In
hard-fail mode (i.e., when the connection to the web server
is completely blocked by the browser because of missing
certificate-related data), relying parties must make sure that
their trusted map servers are highly available and redundant,
to avoid breaking legitimate connections when a single map
server goes offline.

This discussion relates to the so-called “criticality” of
X.509v3 extensions; a non-critical certificate extension may
be ignored if the browser does not recognize it, but must be
processed if it does. Our extensions should thus be defined
as critical only when F-PKI is fully operational and a vast
majority of browsers support it.

B. Configuring Validation Policies

Validation policies must support trust heterogeneity while
providing sensible default values and an intuitive interface for
users to modify their policies. Operating system and browser
vendors, the CA/Browser Forum, and other organizations such
as EFF, ICANN, and Mozilla could provide validation policy
packages that are either installed by default or can be fetched,
possibly modified, and installed by users.

Consider three users with different awareness for security:
Alice who does not have strong security awareness, Bob who is
aware of the importance of security but is not particularly tech-
savvy, and Charlie who is an IT expert who is able and willing
to customize his setup. Let B be a browser that supports
F-PKI. Alice installs B and does not modify default trust
levels. Even such a general validation policy would improve
the security compared to today’s web PKI, as it prevents
downgrade attacks to HTTP. Indeed, when Alice visits a plain
HTTP website, her browser can verify with F-PKI that she’s
not under attack by checking the certificates and policies
relevant to the domain name in question (see Section IX-C for
more details). Bob installs B and a validation policy package
that fits his needs. Such a policy package could define as highly
trusted CAs that support multi-perspective validation, which
prevents BGP hijacking attacks, or national (e.g., American)
CAs for websites with a national TLD (e.g., .us and .gov) to
prevent attacks by a foreign CA, see Section VI-A for more
examples. Charlie installs B and a validation policy package,
then adjusts the validation policy, e.g., by adding or removing
CAs from the set of highly trusted CAs to provide fine-grained
control over the trust decisions. F-PKI thus provides flexibility
and tangible benefits to all users.
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C. HTTP-Downgrading Prevention

F-PKI has the extra benefit of allowing clients to efficiently
verify, when they connect to a plain HTTP website, that no
valid certificates currently exist for the corresponding domain,
eliminating any possibility of a downgrade attack. If a user
visits such a website using the F-PKI browser extension, the
extension detects any downgrade attack and redirects the user
or blocks the connection. With such a system in place, it
becomes possible to both tolerate regular HTTP websites, and
block websites that exhibit the characteristics of a downgrade
attack. This shows that it is possible to support a legacy
protocol without deteriorating the security of a new protocol.
HTTP Strict Transport Security (HSTS) aims at solving the
same problem, but it must be configured by the website
administrator and has limitations as discussed in Section III.

D. On the Multi-Certificate Approach

Following the observation that a PKI should prevent a
single CA from issuing illegitimate certificates for any web-
sites, previous work has made extended use of multi-signed
certificates [63], [2], [60], [57]. Regrettably, requiring sig-
natures from multiple CAs has drawbacks as well. First, it
increases the complexity of the system, particularly if CAs
must communicate and coordinate with each other, which is
not the case in traditional PKIs. Second, an inherent tradeoff
lies in the number of signatures: requiring more entities to
certify the same public key, although it increases resilience,
may be more expensive and deteriorates performance and us-
ability. Finally, consider a government launching a surveillance
campaign through man-in-the-middle attacks: requiring that
certificates be multi-signed does not prevent any attacks if the
country in question controls a sufficient number of CAs.

F-PKI allows domain owners to use multiple certificates
for the same domain name, but gives more flexibility to
domain owners without compromising on security. Although
our PKI offers a set of strong security guarantees even for
single certificates, multi-certificates could be considered an
additional assurance of the binding between public key and
name. Browsers could even display a special security indicator
when a public key is certified by independent CAs, without
making multi-certificates mandatory for all domains.

X. RELATED WORK

F-PKI presents similarities with the Perspectives system
proposed by Wendlandt et al. [65], in that both aim at giving
clients a broader view of existing public keys (to detect ille-
gitimate keys) by relying on a third party. Perspectives allows
SSH or HTTPS clients to detect man-in-the-middle attacks by
contacting “‘semi-trusted” hosts called network notaries. We
improve upon that approach by using verifiable data structures
to reduce the trust put in those third parties and enable an
efficient detection of logging inconsistencies.

Among the most comprehensive proposals for redesigning
the web PKI from the ground up are AKI [34] and its
successor ARPKI [2]. Both systems are based on multi-signed
certificates, which could be used to enhance the security
of F-PKI even further. ARPKI provides resilience to the
compromise of up to n — 1 entities, where n > 3 is a
system parameter. PoliCert [60] builds upon ARPKI to let



each domain owner define its own security parameters and
policies. PoliCert introduces policies similar to ours, but they
are defined in a separate policy file (called SCP) rather than in
the certificate as we do here. This file again relies on a multi-
signing approach to guarantee the authenticity of the policies it
defines. SCPs allow domain owners to specify which CAs they
trust, but the approach suffers from a circular dependency as
SCP themselves must be signed by CAs, without a guarantee
that all relevant policies will always be delivered to the client.
DTKI [66] allows domain owners to define a master certificate
which signs its TLS certificates. This master certificate is
added to a public append-only log using MHTs to provide
a comprehensive set of valid and invalid certificates. Neither
PoliCert nor DTKI support heterogenous trust on the client
side: all CAs are equally trusted.

Syta et al. [57] proposed to address the weakest-link
security problem of today’s infrastructure by deploying a single
“Cothorithy” that federates all existing CAs. This cothorithy
would use CoSi, a collective signing protocol that scales to
a large number of signers, to allow each CA to detect fake
certificates before they are signed. However, the authors do not
provide a detailed description of how these certificates would
be detected and blocked in practice [57]. One of the challenges
of multi-signed certificates is in defining the right threshold
number of required signatures. Moreover, it is unclear whether
multi-signed certificates would prevent state-level adversaries
that control a large number of CAs from issuing illegitimate
certificates.

The trust management system by Braun et al. [6] fixes
issues in the web PKI and also defines trust levels. However,
their approach is different from F-PKI, as they reduce the
attack surface (trusted CAs) based on local knowledge and
reputation, without proofs of presence/absence of policies and
other certificates.

Certificate revocation should be an integral part of any
PKI design, but it is a vast and active research area in
and of itself [10]. Several revocation schemes have been
proposed in academic literature in the last few years, but
browser vendors have also developed and deployed their own
schemes [45], [37]. Although F-PKI has a built-in revocation
mechanism, it could be combined with (or extended by) stand-
alone revocation schemes to improve efficiency or achieve
additional security properties. CRLite [38], for example, uses
Bloom filters to efficiently distribute revocation messages to
clients. F-PKI has similar objectives as CRLite [38, Section 4]
but membership lookup is not sufficient for F-PKI because
clients need to obtain a comprehensive set of domain policies.
PKISN [59] is also a log-based revocation system but focuses
on a specific problem: that of revoking CA certificates without
causing collateral damage.

Dahlberg et al. [17] proposed light-weight monitoring
(LWM), which allows domain owners to perform self-
monitoring to detect bogus certificates issued for their domain
via untrusted notifiers. LWM uses a MHT data structure based
on lexicographically ordered domains similar to our sorted list
MHT discussed in Appendix D. This data structure enables
efficient generation of inclusion and non-inclusion proofs for
certificates. The main difference to F-PKI is that LWM requires
constant self-monitoring by the domain owner to detect bogus
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certificates, requires modifications at the CT log servers, and
provides no proactive security guarantees for users.

XI. CONCLUSION

The web PKI should not only be equipped with means
of detecting illegitimate certificates but it should also prevent
these certificates from being used in attacks altogether. F-PKI
meets this objective while taking into account the challenges
that come with deploying such a scheme. F-PKI does not
require active CA participation, is backward compatible, sup-
ports multiple deployment models (including one that does not
require updates on the server side), and prevents impersonation
attacks. Yet, it minimizes unintended breakage by letting both
domain owners and clients define their own policies. Our
prototype implementation, requiring only a browser extension
and a map server, demonstrates that such a system can be
deployed with minimal changes to the current infrastructure.

Trust is a complex and heterogeneous notion that is only
partially captured by traditional PKIs where CAs are omnipo-
tent. We propose a more flexible model in which authenticity is
derived not only from a certificate chain but also from a global
view of signed statements. With such a view, relying parties
can make informed decisions and only consider a certificate
authentic when no conflicting statements have been issued by
an authority considered highly trusted for the domain name in
question.

The map servers we introduce in this paper are used to
overcome the deficiencies of CT’s log servers without replac-
ing them: they make it possible to efficiently and verifiably
obtain all the data relevant to any domain, for monitoring
purposes and for achieving the additional security properties
we presented. The data structure we propose for map servers
enables clients to efficiently detect policy violations and in-
consistencies.
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APPENDIX
A. Abstract Model of F-PKI

The abstract PKI model presented herein is based on
the model introduced by Maurer [46] and later extended by
Marchesini et al. [44]. We extend it further, primarily to
allow relying parties to request policies that cover a set of
highly trusted CAs (which is a concept distinct from Maurer’s
recommendation levels or confidence values).

The view of a relying party in the public-key infrastructure
is modeled as a set of statements. A statement is valid if it is
either part of an initial view (axiomatic) or derived from a view
using one of the inference rules we present below. Statements
can take one of the following forms:

e Authenticity of Binding: Aus(X, N,R,Z) denotes the
belief that public key X is bound to name N and
trustworthy for issuing certificates over realm R during
time interval Z. The issuance realm R is the set of names
for which the public key X is considered authoritative.

e Certificate: Cert(Xy, X2, N,R,Z) indicates that the
owner of public key X; has issued a certificate to the
owner of X5, which binds public key X5 to name N and
attests that the owner of Xy is trustworthy for issuing
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certificates over realm R. This certificate is valid during
interval Z.

e Log Trust: LogTrust(L,S) denotes trust in log L for
recording certificates issued by authorities in set S.

e Proof of Compliance: Proof(L, X, N,T) denotes a proof
coming from log L that public key X complies with
policies defined for name N. This proof is valid during
interval Z.

e Compliant: Compliant(X, N,C,T) denotes the belief
that public key X is compliant with all policies defined
for name N by entities in set C during interval 7.

A proof of compliance is to a “Compliant” statement what
a certificate is to an authenticity statement: a cryptographic
object used by the relying party to derive an actual belief, for
a limited amount of time, under the condition that the entity
that produced the cryptographic object is trusted for doing so.
A compliance statement can thus be derived from a proof of
compliance and a log-trust statement as follows:

LogTrust(L,S),
Proof(L, X, N,T) -

Compliant(X,N,S,T)

ey

Two compliance statements can be combined, in which
case the resulting statement covers the union of both CA sets,
but is only valid for the intersection of the validity intervals:

Compliant(X, N,S1,7;),
Compliant(X', N, S, T5) -
Compliant(X, N,S51 U 82,71 N1Iy)

©))

If no valid certificate exists for name N, then the log server
may produce a proof where public key X is null (i.e., X = ).
For this reason, in the above equation, X’ may be equal to
either X or (.

The new trust level is introduced with the following func-
tion:

f(N): set of authorities highly trusted for name N

Authenticity is then derived from the following: (a) an
authenticity statement, which specifies the realm R; over
which the issuer has authority; (b) a certificate statement,
declaring the subject’s name Ny € R;; and (c) a compliance
statement for that name such that f(N3) C S:

Aut(leNthaIl)u
Cert(Xl, XQ, NQ, RQ,IQ),
Compliant(Xo, No, S, Z3)

AMI(X27N27R1 NRy, Iy N1y ﬂIg),
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In contrast to previous models, we do not use a dedicated
Trust statement for CAs, to model the concept of “trust-
worthiness for issuing certificates” [46]. Instead, we include
the issuance realm into authenticity statements. This realm
would typically be the set of all possible names for CAs
(with no name constraints) and the empty set for non-CA



entities. This allows us to bind that realm with the rest of
the authenticity statement, and more accurately represent the
HTTPS public-key infrastructure as parameters that relate to
that issuance realm (the CA bit, name constraints) are defined
in the certificate together with other parameters such as the
validity period. However, we employ a separate LogTrust
statement to model entries in the list of trusted logs that relying
parties must establish to support any log-based scheme.

B. Construction of the MHT

Certificates and revocations are added to the map server
as follows. First the CONSTRUCTDICTIONARY method in
Algorithm 2 constructs a hierarchical dictionary structure
that maps domain names to their corresponding certificates
and revocations. The root dictionary, denoted by R, contains
entries for all e2L.Ds, and each of these entries may contain
a dictionary for its subdomains, whose entries can in turn
have further subdomain dictionaries, forming a hierarchical
data structure with one dictionary level per nested subdomain.
Each certificate and revocation is added to every domain listed
in either the common name (CN) attribute of the subject
field or as dNSName in the subject alternative name (SAN)
extension of the (revoked) certificate. After creating R, the
MHT structures are created or updated in a bottom-up fashion,
starting with the subdomain sparse MHTs and finishing with
the e2LD sparse MHT root.

Algorithm 2: Construction of the Map Server

1 L: list of certificates and revocation messages
2 struct {
3 list certificates
list revocations
dictionary subdomains
} Entry
R: dictionary (key: domain; value: Entry)
function CONSTRUCTDICTIONARY(L)
for e € L do
if ISREVOCATION(e)
L ¢ + e.revoked_certificate

=R B T N

_
[

else
L c+e

for d € c.Subject U c.SAN do
d < REMOVEWILDCARD(d)
A < R[E2LD(d)]
for p € PARENTDOMAINS(d) do
> p starts below the e2LLD
A + A.subdomains|p]

if ISREVOCATION(e)
| APPEND(A.revocations, e)

—
w N
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else
| APPEND(A.certificates, ¢)
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23

return R
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C. Automatic Selection of Map Servers

Let M be the set of map servers, C the set of the client’s
highly trusted CAs, and @ the quorum of map servers that
minimally need to support each CA in C. For a map server
M € M, let COST(M) be the cost associated with map server
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M and let SUP(M) be the set of CAs supported by M. The
task is to find z; for 1 < ¢ < | M| which minimizes the
total cost, where xj; = 1 if map server M is included in the
minimal set of map servers and x5; = 0 otherwise.

o CosT(M), an =1
minimize Z { 0 0 oth]grwise
MeM
subject to P Ye=e) cel
M:ceSup(M)
zar € {0,1}, MeM

This is a set-multicover problem, which is NP-hard as we
cannot assume that M has a specific internal structure (e.g.,
Vapnik—Chervonenkis dimensions [8]). A greedy algorithm
can solve the set—multicover problem with time complexity
O(IM|-|C|? - Q). Algorithm 3 describes this in pseudo-code.

Algorithm 3: Greedy Algorithm for Set Multicover

M: set of all map servers

M;n: set of trusted map servers M;, C M

C: set of all CAs

Cin: set of highly trusted CAs C, C C

: min. number of map servers for each CA in Cj,,

S': multiset of trusted CAs covered by the map servers

SuP(X): set of CAs supported by X, for X € M

ALIVE(X, S, Q) := |{Vs € S : ¢ = s}| < Q, returns true if
CA X € C is not yet sufficiently covered in S

N R W N

- 1, ALIVE(c, S,Q)
9 N(X,S,Q) = Z 0. otherwise ° returns
ceSUP(X)
the number of additional CAs covered by selecting map
server X € M

—

o function SELECTMAPSERVERS(My, Cin, Q)

1 Myt + EMPTYSET

12 S <+ EMPTYMULTISET

13 while 3¢ € C;,, : ALIVE(c, S, Q) do

14 if Vi € M;, : N(1,5,Q) =0

L return EMPTYSET © There is no multicover

CosT(m)

N(m,5,0) > Find best candidate

16 Mopt <— argmin
meM;np

Mout — Mout U mopt

Min — Min \ Mopt

| C <« C+ Sup(mopt)

return M,

17
18
19

> Add newly covered CAs
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The algorithm sequentially selects the most cost-efficient
map server (Line 16) until the quorum of map servers is
achieved for all highly trusted CAs (Line 13). After adding
a map server to the minimal set of map servers (Line 17) it
is removed from the pool of available map servers to prevent
picking the same map server more than once (Line 18). If none
of the remaining map servers cover any of the highly trusted
CAs and the quorum is not yet achieved, there is no solution
(Line 15).

Rajagopalan et al. [52] show that this algorithm returns a
set multicover with a cost of Cyreqy Which compares to the



optimal solution Cyp as follows:

Clreedy = Z price(e) )
eeM
1 1 1
Cgreedy SH‘UI-Q'COPHHTL:1+§+§+"'+E 5)
C’greedy S (1 + ln(‘U| . Q)) : Copt (6)

The algorithm allows each map server in M to be as-
sociated with a cost. Using a fixed cost for all map servers
minimizes the number of map servers. Users could define Cost
functions related to trustworthiness of a map server or required
network resources. A map server might support few CAs or
restricts itself to a small subset of domains and thus produce
smaller proofs than large map servers. Selecting several small
map servers could result in a smaller overall proof size.

D. Denial-of-Service Vectors and Mitigations

An attacker can attempt to launch a resource-exhaustion
attack by injecting certificates for e2LLDs such that the hash of
the injected domain and target domain share the same prefix.
If an attacker finds a domain such that the hash of this domain
and the hash of the target domain have a common prefix of
length [ and there is no other domain in the sparse MHT
whose hash has a common prefix of length [ with the target
domain, then the attacker can increase the proof size of the
target domain by 32 Bytes.

The number of prefix collisions an attacker can generate
is bounded by the probability of finding a collision P(l, =
1) =1—(1—271)" for each prefix length I, independently
(m is the number of hash values calculated by the attacker).
We estimated that, if the attacker can perform 10° hash
calculations per second, even after an attack period of one year,
the proof size can only increase by 1100 bytes on average.

The first mitigation is to add a unique, unpredictable, and
regularly updated tree identifier to the map server and include
this identifier in the node, leaf, and domain hash computation
of the sparse MHT, similar to the tree-wide nonce k,, used in
CONIKS [47, Chapter 3.1].

The second mitigation is to use a different data structure
for verifiable logging that produces constant-sized proofs. A
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Fig. 7: Sorted-list MHT, as an alternative to a sparse Merkle
tree, containing subdomains of c.com.

sorted-list MHT [39] is an MHT where each leaf points to
the domain lexicographically adjacent to its own. A leaf thus
consists of its domain d; and the corresponding entry, and
the next domain ds, such that there is no domain d with
diy < d < ds. Figure 7 shows a sorted-list MHT for the
subdomains of c.com. Leaves need not be stored in a specific
order as long as each leaf points to the adjacent domain and
the domain pairs form a cycle which contains all domains.
The hash computation of leaves and intermediate nodes is the
same as in a sparse MHT, explained in Section VI-C, except
that a leaf’s value additionally contains the DER representation
of d; and dy between the fixed leaf prefix and the DER
representation of the entry. Existence of domain d is proven by
providing the hash inclusion proof for the leaf where d = d;.
Non-existence of domain d is proven by the inclusion proof
for the leaf with the domain pair d;, d2 such that d; < d < ds.
Proofs in a sorted-list MHT have the same size as regular MHT
inclusion proofs ([log,L]) in addition to the adjacent domain
which is included in the proof. In a sorted-list MHT, updating
an entry requires changing either [log, L] or [log,L] —1 node
values. Adding and removing entries can, depending on the tree
structure and the inserted domain, in the worst case require
changing up to 3 - [log,L] node values. While both sparse
MHTs and sorted-list MHTs provide a verifiable map based
on a verifiable log, sparse MHTs produce larger proofs on
average but can be updated more efficiently.

Both mitigations incur a performance penalty either
through less efficient update operations on sorted-list MHTSs
or through the necessity of rebuilding the complete tree when
changing the tree identifier.



